首页|卷积神经网络STAP低空风切变风速估计

卷积神经网络STAP低空风切变风速估计

扫码查看
由于机载气象雷达前视阵下存在非均匀性地杂波,导致难以获得足够的独立同分布样本,影响杂波协方差矩阵准确估计,进而影响风速估计.对此,该文提出一种基于卷积神经网络STAP的低空风切变风速估计方法,通过少量样本就能够实现高分辨杂波空时谱估计.首先,基于卷积神经网络模型训练好高分辨杂波空时谱卷积神经网络,接着计算杂波协方差矩阵,进而计算卷积神经网络STAP最优权矢量进行杂波抑制,达到对低空风切变风速精确估计.该文在小样本情况下,将稀疏恢复问题通过卷积神经网络实现,完成对高分辨杂波空时谱有效估计,仿真实验结果表明该方法可以有效估计空时谱,并完成风速估计.
Convolutional Neural Network STAP Low Level Wind Shear Wind Speed Estimation
Due to the non-uniform ground clutter in the forward array of airborne weather radar,it is difficult to obtain enough independent and equally distributed samples,which affects the accurate estimation of clutter covariance matrix and wind speed estimation.In this paper,a novel estimation method of low altitude wind shear speed based on convolutional neural network STAP is proposed,which can realize high resolution clutter space-time spectrum estimation with a small number of samples.First,the high-resolution clutter space-time spectrum convolutional neural network is trained based on the convolutional neural network model,and then the clutter covariance matrix is calculated,and then the optimal weight vector of the convolutional neural network STAP is calculated for clutter suppression,so as to accurately estimate the wind shear speed at low altitude.The sparse recovery problem is realized by convolutional neural network in the case of small samples,and the space-time spectrum of high-resolution clutter is effectively estimated.The simulation results show that the proposed method can effectively estimate the space-time spectrum and complete the wind speed estimation.

Airborne weather radarCNNLow-altitude windshearWind speed estimation

李海、张强、周桉宇、熊玉

展开 >

中国民航大学天津市智能信号与图像处理重点实验室,天津 300300

机载气象雷达 卷积神经网络 低空风切变 风速估计

国家重点研发计划项目天津市自然基金重点项目

2021YFB160060020JCZDJC00490

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(8)