首页|平滑注意力与谱上采样细化的非等距三维点云模型对应关系计算

平滑注意力与谱上采样细化的非等距三维点云模型对应关系计算

扫码查看
为了解决非等距3维点云模型对应关系计算易受模型大尺度形变影响而导致对应失真、准确率低且平滑性差的问题,该文提出一种结合平滑注意力与谱上采样细化的非等距3维点云模型对应关系计算新方法.首先,利用点所在表面的几何特征信息设计平滑注意力机制与平滑感知模块,提高特征对大尺度形变区域非刚性变换的感知能力;其次,将深度函数映射模块与平滑正则化约束相结合,提升函数映射计算结果的平滑性;最后,在谱上采样细化模块中,以多分辨率重建的方式得到最终的逐点映射结果.实验结果表明,与已有算法相比,本算法在FAUST、SCAPE和SMAL数据集上构建的对应关系测地误差最小,处理大尺度形变模型时,能够提升逐点映射的平滑性和全局准确率.
Correspondence Calculation of Non-isometric 3D Point Shapes Based on Smooth Attention and Spectral Up-sampling Refinement
To address the problem that the correspondence calculation of non-isometric 3D point cloud shape is easily affected by large-scale distortions,which often leads to corresponding distortions,low accuracy,and poor smoothness,a new algorithm of shape correspondence calculation for non-isometric 3D point cloud is proposed,which combines smooth attention with spectral up-sampling refinement.Firstly,a smooth attention mechanism and a smooth perception module are designed using the geometric feature information of the surface on which the points are located to improve the perception ability of the features for non-rigid transformations in large-scale deformation areas.Secondly,the deep functional maps module is combined with smooth regularization constraints to improve the smoothness of the functional maps calculation results.Finally,the final point-by-point mapping result is obtained using a multi-resolution reconstruction method in the spectral up-sampling refinement module.Experimental results show that the proposed algorithm has the smallest geodesic error in the correspondence constructed on the FAUST,SCAPE,and SMAL datasets compared with existing algorithms.It can improve the smoothness and global accuracy of point-by-point mapping for shapes with large-scale deformation.

Shape correspondenceNon-isometric 3D point cloud shapeSmooth attention mechanismFunctional mapsSpectral up-sampling refinement

杨军、张思洋、吴衍

展开 >

兰州交通大学电子与信息工程学院 兰州 730070

兰州交通大学测绘与地理信息学院 兰州 730070

福建技术师范学院大数据与人工智能学院 福清 350300

对应关系 非等距3维模型 平滑注意力 函数映射 谱上采样细化

国家自然科学基金

42261067

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(8)