首页|扩展目标跟踪Student's t逆Wishart平滑算法

扩展目标跟踪Student's t逆Wishart平滑算法

扫码查看
脉冲干扰和离群量测信息等因素通常会导致异常的厚尾噪声,这使得以高斯假设为前提的扩展目标跟踪(ETT)估计器的性能急剧降低,针对该问题该文提出一种基于扩展目标随机矩阵模型(RMM)的Student's t逆Wishart平滑(StIWS)算法.首先,将目标的运动状态以及过程噪声和量测噪声建模为Student's t分布以表征异常噪声对扩展目标概率分布的影响,将目标扩展状态建模为服从逆Wishart分布的随机矩阵.然后,在Student's t贝叶斯平滑框架下,详细推导了能在扩展目标的多重特征动态演变的过程中有效估计目标状态的StIWS算法.最后,通过扩展目标跟踪的仿真实验结果和真实场景实验结果验证了所提算法的有效性.
Student's t Inverse Wishart Smoothing Algorithm for Extended Target Tracking
Elements such as pulse interference and outlier measurement information usually lead to abnormal heavy-tailed noise,which sharply reduces the performance of the Extended Target Tracking(ETT)estimator based on the Gaussian hypothesis.To address this problem,a Student's t Inverse Wishart Smoothing(StIWS)algorithm based on the Random Matrix Model(RMM)is proposed.Firstly,the kinematic state of the target,process noise and measurement noise are modeled as a Student's t distribution to characterize the effect of anomalous noise on the probability distribution of extended target,and the extended state of target is modeled as a random matrix which obeys inverse Wishart distribution.Then,in a Student's t bayesian smoothing frame,the StIWS algorithm is derived in detail,which can effectively estimate target state in the process of the dynamic evolution of multiple characteristics of extended target.Finally,the effectiveness of the proposed algorithm is verified by the simulation experiment and the engineering experiment of extended target tracking.

Extended target trackingStudent's t smoothingInverse wishart distributionHeavy-tailed noise

陈辉、张丁丁、连峰、韩崇昭

展开 >

兰州理工大学电气工程与信息工程学院 兰州 730050

西安交通大学自动化科学与工程学院 西安 710049

扩展目标跟踪 Student's t平滑 逆Wishart分布 厚尾噪声

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金甘肃省教育厅产业支撑计划项目2023年甘肃省军民融合发展专项资金项目2024年甘肃省重点人才项目

621630236236603162363023618731162021CYZC-02

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(8)