首页|利用全球开源数字高程模型的高程误差预测数据集

利用全球开源数字高程模型的高程误差预测数据集

扫码查看
数字高程模型(DEM)校正一直是遥感地学研究中的重要内容,近年来蓬勃发展的机器学习新方法为DEM高程误差校正提供了新的解决途径.由于机器学习等人工智能方法依赖大量的训练数据,考虑到目前缺少大区域公开的、统一的、大规模和规范化多源DEM高程误差预测数据集,针对数据集缺失的问题,该文公开了多源DEM高程误差预测数据集(DEEP-Dataset).该数据集包括4个子数据集,分别基于中国广东省研究区域的数字高程测量的TerraSAR-X附加组件(TanDEM-X)DEM和先进陆地观测卫星世界3D-30米(AW3D30)DEM以及澳大利亚北领地研究区域的航天飞机雷达地形测绘任务(SRTM)DEM和先进星载热发射和反射辐射计全球数字高程模型(ASTER)DEM构成.其中,广东省研究区域的样本数量约为40 000,北领地研究区域的样本数约量为1 600 000.数据集中的每个样本均由10个特征组成,涵盖了地理空间、地物种类以及地表形态等特征信息.通过设置机器学习模型测试、DEM校正以及特征重要性评估等对比实验,验证了 DEEP-Dataset在实际模型训练和DEM校正中的有效性,也证明了该数据集的合理性和丰富性.
Elevation Error Prediction Dataset Using Global Open-source Digital Elevation Model
The correction in Digital Elevation Models(DEMs)has always been a crucial aspect of remote sensing geoscience research.The burgeoning development of new machine learning methods in recent years has provided novel solutions for the correction of DEM elevation errors.Given the reliance of machine learning and other artificial intelligence methods on extensive training data,and considering the current lack of publicly available,unified,large-scale,and standardized multisource DEM elevation error prediction datasets for large areas,the multi-source DEM Elevation Error Prediction Dataset(DEEP-Dataset)is introduced in this paper.This dataset comprises four sub-datasets,based on the TerraSAR-X add-on for Digital Elevation Measurements(TanDEM-X)DEM and Advanced land observing satellite World 3D-30 m(AW3D30)DEM in the Guangdong Province study area of China,and the Shuttle Radar Topography Mission(SRTM)DEM and Advanced Spaceborne Thermal Emission and reflection Radiometer(ASTER)DEM in the Northern Territory study area of Australia.The Guangdong Province sample comprises approximately 40 000 instances,while the Northern Territory sample includes about 1 600 000 instances.Each sample in the dataset consists of ten features,encompassing geographic spatial information,land cover types,and topographic attributes.The effectiveness of the DEEP-Dataset in actual model training and DEM correction has been validated through a series of comparative experiments,including machine learning model testing,DEM correction,and feature importance assessment.These experiments demonstrate the dataset's rationality,effectiveness,and comprehensiveness.

Digital Elevation Model(DEM)Artificial intelligenceMachine learningPredictive datasets

余翠琳、王青松、钟梓炫、张君豪、赖涛、黄海风

展开 >

中山大学电子与通信工程学院 深圳 518107

数字高程模型 人工智能 机器学习 预测数据集

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(9)