首页|微多普勒辅助的城市环境无人机编队检测方法

微多普勒辅助的城市环境无人机编队检测方法

扫码查看
针对城市复杂环境下电磁环境复杂、多径杂波和干扰信号密集等现象,传统的无人机(UAV)检测方法通过获取回波信号提取目标多普勒信息进行检测,易受到环境影响导致检测效果不理想.该文提出微多普勒辅助的城市环境无人机编队检测方法,充分利用无人机的微动特征,能够在复杂环境下提高检测精度.首先,参数化建模表征城市复杂环境下无人机旋翼的雷达回波微多普勒信号,利用YOLOv5s检测微多普勒闪烁脉冲,有效提取位置信息;然后,引入雷达信号分选方法的脉冲重复间隔(PRI)变换,分类获得无人机编队数量;最后,利用K-means算法验证无人机编队检测方法的准确性.结果表明,所提方法在信噪比2 dB时7架无人机的检测精度高于90%,能够用于城市复杂环境存在干扰脉冲、多径效应、局部脉冲丢失的无人机编队检测.
Micro-Doppler-assisted Unmanned Aerial Vehicle Formation Detection Method in Urban Environments
Considering the phenomena of complex electromagnetic environment,multipath clutter and dense interference signals in complex urban environments,the traditional Unmanned Aerial Vehicle(UAV)detection method extracts the target Doppler information for detection by obtaining echo signals,which is susceptible to environmental impacts and leads to unsatisfactory detection results.A micro-Doppler-assisted formation detection method for UAVs in urban environments is proposed in this paper,which makes full use of micro-motion characteristics to improve detection accuracy.Firstly,parametric modeling characterizes the radar echo micro-Doppler signals of UAV rotor blades in urban complex environments,and detects the micro-Doppler scintillation pulses by using YOLOv5s to effectively extract the positional information.Then,the Pulse Repetition Interval(PRI)transform of the radar signal sorting method is introduced to classify and obtain the number of UAV formations.Finally,K-means algorithm is utilized to verify the accuracy of the UAV formation detection method.The results show that the proposed method has a detection accuracy of more than 90%for seven UAVs at a signal-to-noise ratio of 2 dB,and can be used for UAV formation detection in urban complex environments where there are interfering pulses,multipath effects,and local pulse loss.

Unmanned Aerial Vehicle(UAV)formationComplex urban environmentsFormation detectionYOLOv5sMicro-doppler extraction

张杰、朱宇、王洋

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

谢菲尔德大学电子电气工程系 谢菲尔德S10 2TN

无人机编队 编队检测 城市复杂环境 YOLOV5s 微多普勒提取

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(9)