首页|基于自适应特征融合和注意力机制的变电设备红外图像识别

基于自适应特征融合和注意力机制的变电设备红外图像识别

扫码查看
针对变电设备红外图像复杂背景下多目标、小目标及遮挡目标识别效果差的问题,该文提出一种基于中心点网络(CenterNet)的变电设备红外图像识别方法.通过将自适应特征融合模块(ASFF)和特征金字塔(FPN)相结合,构建ASFF+FPN结构的特征融合网络,增强了模型对多目标和小目标的跨尺度特征融合能力,排除背景信息;针对网络对遮挡目标特征捕捉能力差的问题,在特征融合网络中添加全局注意力机制,增强目标显著度;为实现模型轻量化,引入深度可分离卷积,减少参数量和推理时间;最后,通过引入分布焦点损失函数,克服了原损失函数对遮挡目标敏感性差的问题,提升了模型收敛速度和识别精度.在包含7种红外变电设备图像的自建数据集上进行测试.实验表明该算法与原始算法相比,识别精度提升了3.55%,达到了95.19%,模型参数量仅为32.52M,与4种主流目标识别算法对比,该算法在识别精度和算法复杂度上具有明显优势.
Infrared Image Recognition of Substation Equipment Based on Adaptive Feature Fusion and Attention Mechanism
To address the challenges of poor recognition effect of the infrared substation equipment image caused by multi-target,small target and occlusion target in complex background,an infrared image recognition method for substation equipment based on CenterNet is proposed.By combining the Adaptive Spatial Feature Fusion(ASFF)module and Feature Pyramid Networks(FPN),a feature fusion network with the structure of ASFF+FPN is constructed,and the cross-scale feature fusion capability of the model for multi-target and small target is enhanced,which excludes background information.To improve the feature capturing ability of occluding targets,the global attention mechanism is introduced to the feature fusion network to enhance target saliency.Additionally,depthwise separable convolution is introduced to reduce parameters number and model inference time,and a lightweight model is achieved.Finally,the problem of poor sensitivity to obscured targets is overcame by using the distribution focal loss function,and the convergence speed and recognition accuracy is improved.Tests are performed on a self-built dataset containing seven infrared substation equipment images.Experimental results demonstrate that the proposed algorithm achieves a recognition accuracy of 95.19%,an improvement of 3.55%compared with the original algorithm,while it only has 32.52M model parameters.Furthermore,the method shows significant advantages in recognition accuracy and algorithm complexity,over four main target recognition algorithms.

Substation equipmentInfrared image recognitionCenterNetAdaptive Spatial Feature Fusion(ASFF)Attention mechanism

王媛彬、吴冰超

展开 >

西安科技大学电气与控制工程学院 西安 710054

西安市电气设备状态监测与供电安全重点实验室 西安 710054

变电设备 红外图像识别 中心点网络 自适应特征融合 注意力机制

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(9)