首页|静态与动态域先验增强的两阶段视频压缩感知重构网络

静态与动态域先验增强的两阶段视频压缩感知重构网络

扫码查看
视频压缩感知重构属于高度欠定问题,初始重构质量低与运动估计方式单一限制了帧间相关性的有效建模.为改善视频重构性能,该文提出静态与动态域先验增强两阶段重构网络(SDPETs-Net).首先,提出利用参考帧测量值重构2阶静态域残差的策略,并设计相应的静态域先验增强网络(SPE-Net),为动态域先验建模提供可靠基础.其次,设计塔式可变形卷积联合注意力搜索网络(PDCA-Net),通过结合可变形卷积与注意力机制的优势,并构建塔式级联结构,有效地建模并利用动态域先验知识.最后,多特征融合残差重构网络(MFRR-Net)从多尺度提取并融合各特征的关键信息以重构残差,缓解两阶段耦合导致不稳定的模型训练,并抑制特征的退化.实验结果表明,在UCF101测试集下,与具有代表性的两阶段网络JDR-TAFA-Net相比,峰值信噪比(PSNR)平均提升3.34 dB,与近期的多阶段网络DMIGAN相比,平均提升0.79 dB.
Static and Dynamic-domain Prior Enhancement Two-stage Video Compressed Sensing Reconstruction Network
Video compressed sensing reconstruction is a highly underdetermined problem,where the low-quality of initial reconstructed and the single-motion estimation approach limit the effective modeling of inter-frames correlations.To improve video reconstruction performance,the Static and Dynamic-domain Prior Enhancement Two-stage reconstruction Network(SDPETs-Net)is proposed.Firstly,a strategy of reconstructing second-order static-domain residuals using reference frame measurements is proposed,and a corresponding Static-domain Prior Enhancement Network(SPE-Net)is designed to provide a reliable basis for dynamic-domain prior modeling.Secondly,the Pyramid Deformable-convolution Combined with Attention-search Network(PDCA-Net)is designed,which combines the advantages of deformable-convolution and attention mechanisms,and a pyramid cascade structure is constructed to effectively model and utilize dynamic-domain prior knowledge.Lastly,the Multi-Feature Fusion Residual Reconstruction Network(MFRR-Net)extracts and fuses key information of each feature from multiple scales to reconstruct residues,alleviating the instability of model training caused by the coupling of the two stages and suppressing feature degradation.Simulation results show that the Peak Signal-to-Noise Ratio(PSNR)is improved by an average of 3.34 dB compared to the representative two-stage network JDR-TAFA-Net under the UCF101 test set,and by an average of 0.79 dB compared to the recent multi-stage network DMIGAN.

Video Compressed Sensing(VCS)Inter-frame correlation modelingTwo-stage reconstructionFeature alignment

杨春玲、梁梓文

展开 >

华南理工大学电子与信息学院 广州 510000

视频压缩感知 帧间相关性建模 两阶段重构 特征对齐

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(11)