首页|利用深度强化学习的多阶段博弈网络拓扑欺骗防御方法

利用深度强化学习的多阶段博弈网络拓扑欺骗防御方法

扫码查看
针对当前网络拓扑欺骗防御方法仅从空间维度进行决策,没有考虑云原生网络环境下如何进行时空多维度拓扑欺骗防御的问题,该文提出基于深度强化学习的多阶段Flipit博弈网络拓扑欺骗防御方法来混淆云原生网络中的侦察攻击.首先分析了云原生网络环境下的拓扑欺骗攻防模型,接着在引入折扣因子和转移概率的基础上,构建了基于Flipit的多阶段博弈网络拓扑欺骗防御模型.在分析博弈攻防策略的前提下,构建了基于深度强化学习的拓扑欺骗生成方法求解多阶段博弈模型的拓扑欺骗防御策略.最后,通过搭建实验环境,验证了所提方法能够有效建模分析云原生网络的拓扑欺骗攻防场景,且所提算法相比于其他算法具有明显的优势.
Multi-Stage Game-based Topology Deception Method Using Deep Reinforcement Learning
Aiming at the problem that current network topology deception methods only make decisions in the spatial dimension without considering how to perform spatio-temporal multi-dimensional topology deception in cloud-native network environments,a multi-stage Flipit game topology deception method with deep reinforcement learning to obfuscate reconnaissance attacks in cloud-native networks.Firstly,the topology deception defense-offense model in cloud-native complex network environments is analyzed.Then,by introducing a discount factor and transition probabilities,a multi-stage game-based network topology deception model based on Flipit is constructed.Furthermore under the premise of analyzing the defense-offense strategies of game models,a topology deception generation method is developed based on deep reinforcement learning to solve the topology deception strategy of multi-stage game models.Finally,through experiments,it is demonstrated that the proposed method can effectively model and analyze the topology deception defense-offense scenarios in cloud-native networks.It is shown that the algorithm has significant advantages compared to other algorithms.

Cloud-native networkTopology deceptionMulti-stage Flipit gameDeep reinforcement learningDeep deterministic policy gradient

何威振、谭晶磊、张帅、程国振、张帆、郭云飞

展开 >

信息工程大学信息技术研究所 郑州 450001

网络空间安全教育部重点实验室 郑州 450001

云原生网络 拓扑欺骗 多阶段Flipit博弈 深度强化学习 深度确定性策略梯度算法

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(12)