首页|结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法

结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法

扫码查看
建立准确的电力负荷短期预测模型对于电力系统的稳定运行和智能化进程至关重要.目前的主流预测方法无法很好地突破数据波动性和模型不确定性两个问题.基于此,该文提出一种基于贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法.具体地,提出自适应特征提取方法获取多维度特征,通过捕捉多尺度特征和时频局部信息,增强模型对负荷数据中高波动性和非线性特征的处理能力.其次,提出基于贝叶斯Autoformer的预测模型,它可以捕获负荷数据中重要子序列特征以及不确定性,并通过贝叶斯优化方法实现概率预测分布和参数分布的动态更新.所提模型在3个量级(GW,MW,KW)的实际负荷数据集上进行一系列实验分析(对比分析、自适应分析、鲁棒性分析).结果表明,所提预测模型在自适应和准确性方面具有优越的性能,均方根误差(RMSE)、弹球损失(Pinball Loss)、连续概率评分(CRPS),相较对比方法分别提升1.9%,24.2%,4.5%.
Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network
Establishing accurate short-term forecasting models for electrical load is crucial for the stable operation and intelligent advancement of power systems.Traditional methods have not adequately addressed the issues of data volatility and model uncertainty.In this paper,a multi-dimensional adaptive short-term forecasting method for electrical load based on Bayesian Autoformer network is proposed.Specifically,an adaptive feature selection method is designed to capture multi-dimensional features.By capturing multi-scale features and time-frequency localized information,the model is enhanced to handle high volatility and nonlinear features in load data.Subsequently,an adaptive probabilistic forecasting model based on Bayesian Autoformer network is proposed.It captures relationships of significant subsequence features and associated uncertainties in load time series data,and dynamically updates the probability prediction model and parameter distributions through Bayesian optimization.The proposed model is subjected to a series of experimental analyses(comparative analysis,adaptive analysis,robustness analysis)on real load datasets of three different magnitudes(GW,MW,and KW).The model exhibits superior performance in adaptability and accuracy,with average improvements in Root Mean Square Error(RMSE),Pinball Loss,and Continuous Ranked Probability Score(CRPS)of 1.9%,24.2%,and 4.5%,respectively.

Load forecastingProbabilistic forecastingBayesian neural networkAutoformer

周师琦、王俊帆、赖俊升、袁毓杰、董哲康

展开 >

杭州电子科技大学电子信息学院 杭州 310018

浙江省装备电子重点实验室 杭州 310018

英国伦敦布鲁奈尔大学电子与计算机工程系 伦敦UB8 3PH

中国民航大学空中交通管理学院 天津 300300

展开 >

负荷预测 概率预测 贝叶斯神经网络 Autoformer

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(12)