首页|一种目标区域特征增强的SAR图像飞机目标检测与识别网络

一种目标区域特征增强的SAR图像飞机目标检测与识别网络

扫码查看
在合成孔径雷达(SAR)图像飞机目标检测识别中,飞机目标图像呈现离散特性以及结构之间的相似性会降低飞机检测与识别的准确率.为此该文设计了一种目标区域特征增强的SAR图像飞机目标检测与识别网络.网络由3部分组成:保护飞机特征的跨阶段部分网络(FP-CSPDarnet)、自适应特征融合的特征金字塔(FPN-A)以及目标区域散射特征提取与增强的检测头(D-Head).FP-CSPDarnet在提取特征的同时可以有效保护SAR图像飞机特征;FPN-A采用多层次特征自适应融合、细化,来增强飞机特征;D-Head在检测前有效增强飞机可辨别特征,提升飞机检测与识别精度.利用SAR-ADRD数据集的实验结果证明了该文所提方法有效性,其平均精度相对与基线网络YOLOv5s提升了 2.0%.
A SAR Image Aircraft Target Detection and Recognition Network with Target Region Feature Enhancement
In Synthetic Aperture Radar(SAR)image aircraft target detection and recognition,the discrete characteristics of aircraft target images and the similarity between structures can reduce the accuracy of aircraft detection and recognition.A SAR image aircraft target detection and recognition network with enhanced target area features is proposed in this paper.The network consists of three parts:Feature Protecting Cross Stage Partial Darknet(FP-CSPDarnet)for protecting aircraft features,Feature Pyramid Net with Adaptive fusion(FPN-A)for adaptive feature fusion,and Detection Head for target area scattering feature extraction and enhancement(D-Head).FP-CSPDarnet can effectively protect the aircraft features in SAR images while extracting features;FPN-A adopts multi-level feature adaptive fusion and refinement to enhance aircraft features;D-Head effectively enhances the identifiable features of the aircraft before detection,improving the accuracy of aircraft detection and recognition.The experimental results using the SAR-ADRD dataset have demonstrated the effectiveness of the proposed method,with an average accuracy improvement of 2.0%compared to the baseline network YOLOv5s.

Synthetic Aperture Radar(SAR)Aircraft target detection and recognitionYOLOv5sAircraft feature protectionTarget area feature enhancement

韩萍、赵涵、廖大钰、彭彦文、程争

展开 >

中国民航大学智能信号与图像处理天津市重点实验室 天津 300300

合成孔径雷达 飞机目标检测与识别 YOLOv5s 飞机特征保护 特征增强

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(12)