首页|基于自适应交互式多卡尔曼滤波模型的组合导航算法研究

基于自适应交互式多卡尔曼滤波模型的组合导航算法研究

扫码查看
在组合导航系统中,信息融合和定位精度取决于惯性系统和传感器的特性,然而在实际应用中获取先验知识仍然具有挑战性.为解决车辆导航中卫星信号质量的变化及系统非线性降低组合导航系统性能的问题,该文提出一种基于多卡尔曼滤波器的模糊自适应交互式多模型算法(FAIMM-MKF),将基于卫星信号质量的模糊控制器(Fuzzy Controller)与自适应交互多模型(AIMM)相结合,通过组合无迹卡尔曼滤波(UKF)、迭代扩展卡尔曼滤波(IEKF)和平方根容积卡尔曼滤波(SRCKF)3种不同的滤波器,适配车辆动力学模型,并通过车载半实物仿真实验验证该方法的性能.结果表明,在卫星信号质量发生改变的情况下,与传统的交互式多模型算法相比,该方法显著提高了车辆在复杂环境中的定位精度.
Research on Combined Navigation Algorithm Based on Adaptive Interactive Multi-Kalman Filter Modeling
Practical applications struggle to obtain prior knowledge about inertial systems and sensors,affecting information fusion and positioning accuracy in combined navigation systems.To address the degradation of integrated navigation performance due to satellite signal quality changes and system nonlinearity in vehicle navigation,a Fuzzy Adaptive Interactive Multi-Model algorithm based on Multiple Kalman Filters(FAIMM-MKF)is proposed.It integrates a Fuzzy Controller based on satellite signal quality(Fuzzy Controller)and an Adaptive Interactive Multi-Model(AIMM).Improved Kalman filters such as Unscented Kalman Filter(UKF),Iterated Extended Kalman Filter(IEKF),and Square-Root Cubature Kalman Filter(SRCKF)are designed to match vehicle dynamics models.The method's performance is verified through in-vehicle semi-physical simulation experiments.Results show that the method significantly improves vehicle positioning accuracy in complex environments with varying satellite signal quality compared to traditional interactive multi-model algorithms.

Intergrated navigationInteracting Multiple Model(IMM)Kalman Filter(KF)Fuzzy controller

陈光武、王思琪、司涌波、周鑫

展开 >

兰州交通大学自动化与电气工程学院 兰州 730070

甘肃省高原交通信息工程及控制重点实验室 兰州 730070

组合导航 交互式多模型 卡尔曼滤波器 模糊控制器

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(12)