首页|基于图像偏移角和多分支卷积神经网络的旋转不变模型设计

基于图像偏移角和多分支卷积神经网络的旋转不变模型设计

扫码查看
卷积神经网络(CNN)具有平移不变性,但缺乏旋转不变性.近几年,为卷积神经网络进行旋转编码已成为解决这一技术痛点的主流方法,但这需要大量的参数和计算资源.鉴于图像是计算机视觉的主要焦点,该文提出一种名为图像偏移角和多分支卷积神经网络(OAMC)的模型用于实现旋转不变.首先检测输入图像的偏移角,并根据偏移角反向旋转图像;将旋转后的图像输入无旋转编码的多分支结构卷积神经网络,优化响应模块,以输出最佳分支作为模型的最终预测.OAMC模型在旋转后的手写数字数据集上以最少的8 k参数量实现了96.98%的最佳分类精度.与在遥感数据集上的现有研究相比,模型仅用前人模型的1/3的参数量就可将精度最高提高8%.
Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks
Convolutional Neural Networks(CNNs)exhibit translation invariance but lack rotation invariance.In recent years,rotating encoding for CNNs becomes a mainstream approach to address this issue,but it requires a significant number of parameters and computational resources.Given that images are the primary focus of computer vision,a model called Offset Angle and Multibranch CNN(OAMC)is proposed to achieve rotation invariance.Firstly,the model detect the offset angle of the input image and rotate it back accordingly.Secondly,feed the rotated image into a multibranch CNN with no rotation encoding.Finally,Response module is used to output the optimal branch as the final prediction of the model.Notably,with a minimal parameter count of 8 k,the model achieves a best classification accuracy of 96.98%on the rotated handwritten numbers dataset.Furthermore,compared to previous research on remote sensing datasets,the model achieves up to 8%improvement in accuracy using only one-third of the parameters of existing models.

Deep learningRotated image classificationOffset angleMultibranch Convolutional Neural Networks(CNN)

张萌、李响、张经纬

展开 >

东南大学集成电路学院 南京 211189

兰州大学物理科学与技术学院 兰州 730000

深度学习 旋转图像分类 偏移角 多分支卷积神经网络

2024

电子与信息学报
中国科学院电子学研究所 国家自然科学基金委员会信息科学部

电子与信息学报

CSTPCD北大核心
影响因子:1.302
ISSN:1009-5896
年,卷(期):2024.46(12)