首页|基于改进YOLOv5算法的水淹电厂检测算法研究

基于改进YOLOv5算法的水淹电厂检测算法研究

扫码查看
为能实现对电厂水淹或设备漏水等现象快速、准确的检测与识别,通过利用区域上下文信息补充特征信息,采用改进的多尺度检测部分融合浅层的位置信息,提出了一种基于改进YOLOv5 的水淹电厂图像检测算法;此外,针对水淹电厂现象构建一个电厂设备的水渍渗漏数据集并使用了数据增强策略;经实验测试表明,算法在检测效果上提升明显,相比于基于原始YOLOv5 算法的水淹电厂模型的平均精度均值mAP提升了 5.24%,满足了工程实际需求,具有较高的实用性.
Research on Detection Algorithm of Flooded Power Plant Based on Improved YOLOv5 Algorithm
In order to quickly and accurately detect and identify phenomena such as power plant flooding or equipment leakage,by using regional context information to supplement feature information,and multi-scale detection method to partially fuse shallow location infor-mation,an image detection algorithm for flooded power plants based on improved YOLOv5 is proposed.In addition,a dataset of water damage and leakage of power plant equipment for the phenomenon of flooded power plants is constructed data enhancement strategy is used.Experimental tests show that the detection effect of the algorithm is significantly improved,compared with the flooded power plant model based on the original YOLOv5 algorithm,the mAP value has increased by 5.24%,which meets the actual needs of the project and has high practicability.

flooded power planttarget detectiondeep learningYOLOv5 algorithm

张显、吴青盟、王龙、王成军、崔东辉、张萌

展开 >

贵州黔源电力股份有限公司,贵州 贵阳 550002

南京南自信息技术有限公司,江苏 南京 210003

东南大学电子科学与工程学院,江苏 南京 210096

水淹电厂 目标检测 深度学习 YOLOv5算法

2021年工信部人工智能产业创新任务揭榜挂帅项目

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(1)
  • 15