首页|基于稀疏度自适应变步长的离格DOA估计方法

基于稀疏度自适应变步长的离格DOA估计方法

扫码查看
网格划分产生的量化误差是影响信源定位估计性能的一个重要缺陷.针对目前Lp 类离格算法计算量大以及需要提前预知稀疏度的问题,提出了一种稀疏度自适应变步长的离格波达方向定位方法.首先根据一阶泰勒展开构建基于角度优化的离格参数模型,以残差能量的变化作为预估稀疏度K的条件.然后利用噪声子空间与信号子空间正交性作为原子误差入选判定依据,利用交替迭代优化方法实现离格模型下的准确求解.所提方法结合了贪婪算法支撑集选取策略与阵列协方差矩阵的有效信息.仿真实验表明,在满足稀疏性条件下,所提方法不仅大大缩短运算时间,而且可以实现空域角度范围内任意角度的精确估计.
An Off-Grid DOA Estimation Method Based on Sparsity Adaptive
The quantization error generated by grid segmentation is an important drawback affecting the performance of source localiza-tion estimation.Aiming at the problems of the computational intensity of current Lp-norm off-grid algorithms and the need to predict sparsity in advance,a sparsity adaptive variable-step off-grid DOA localization method is proposed.Firstly,an angle-optimised off-grid parametric model is constructed based on first-order Taylor expansion,the change in residual energy is used as a condition for predicting sparsity K.The noise subspace and signal subspace orthogonality is then used as the basis for atomic error selection,and accurate solu-tions under off-grid models are realized using alternating iterative optimization methods.The proposed method combines a greedy algo-rithm support set selection strategy with valid information from the array covariance matrix.Simulation results reveal that the method not only reduces the operation time significantly,but also enables accurate estimation of any angle in the airspace angle range under the sparsity condition.

off-griddirection of arrival(DOA)sparse reconstructiongreedy algorithm

李鹏、单钰强、林事力、纵彪

展开 >

南京信息工程大学 江苏省气象探测与信息处理重点实验室,江苏 南京 210044

南京信息工程大学滨江学院 自动化学院,江苏 无锡 214105

南京信息工程大学 江苏省气象传感网技术工程中心,江苏 南京 210044

离格 波达方向 稀疏重构 贪婪算法

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(3)