首页|基于小波包分解多信息融合的配电网故障选线保护方法

基于小波包分解多信息融合的配电网故障选线保护方法

扫码查看
为了解决配电网混合线路频发单相接地故障导致选线困难的问题,提出了一种新的保护方法.该方法通过db10 小波包对配电网每条出线的零序电流进行第 5 层分解得到零序电流小波低频重构系数,运用Hausdorff距离算法将每条出线的低频重构系数进行计算得到不匹配度特征值;再结合小波包能量特点得到每条出线归一化后的综合小波能量特征值,将两种故障特征量作为输入量,结合随机森林算法具有数据融合和无需设定阀值的特性,建立配电网故障选线判别模型.通过将不同工况下得到的 256 组训练样本数据对模型进行训练获得判别模型的最优参数,再将剩余不同的 48 组测试数据进行模型验证,结果表明该方法在不同的故障条件下故障判别准确率高,具有较强的适用性.同时将所提出的方法与BP神经网络、ELM信息融合选线方法进行了对比,仿真结果表明,在加入信噪比为 40 dB和 20 dB的高斯白噪声的工况下,所提出的故障选线方法无论是分类准确率还是收敛时间都具有显著的优势.
The Method of Fault Line Selection Protection for Distribution Network Based on Wavelet Packet Decomposition and Multi Information Fusion
In order to solve the problem of difficult line selection caused by the frequent occurrence of single-phase ground faults in mixed lines of distribution network,a new protection method is proposed.The method uses db10 wavelet packet to decompose the zero sequence current of each outgoing line in the fifth layer to obtain the wavelet low frequency reconstruction coefficient of zero sequence current,and uses Hausdorff distance algorithm to calculate the low frequency reconstruction coefficient of each outgoing line to obtain the characteristic value of mismatch degree.Combined with the energy characteristics of wavelet packets,the normalized comprehensive wavelet energy eigenvalues of each outgoing line are obtained,and the two fault eigenvalues are taken as the input values.Combined with random forest algorithm,which has the characteristics of data fusion and does not need to set a threshold,the fault line selection discrimination model of distribution network is established.The model is trained with 256 groups of training sample data obtained under different working conditions to obtain the optimal parameters,and then verified with the remaining 48 groups of different test data,the results show that the method has high accuracy of fault discrimination under different fault conditions,and has strong applicability.At the same time,the proposed method is compared with the methods BP neural network and ELM information fusion line selection.The corresponding results show that the proposed fault line selection method has significant advantages both in classification accuracy and convergence time when two types of Gaussian white noise with the signal to noise ratio of 40 dB and 20 dB are added.

fault line selectiondb10 wavelet packetHausdorff distance algorithmzero-sequence current deviation matrixrandom forest algorithm

白浩、李巍、杨建洲、杨永涛、潘姝慧、李瑞桂

展开 >

南方电网科学研究院,广东 广州 510663

云南电网有限责任公司丽江供电局,云南 丽江 674199

河北旭辉电气股份有限公司,河北 石家庄 050035

故障选线 db10小波包 Hausdorff距离算法 零序电流偏差矩阵 随机森林算法

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(3)