首页|基于变分模态分解和长短期记忆网络的输电线路故障诊断

基于变分模态分解和长短期记忆网络的输电线路故障诊断

扫码查看
针对输电线路短路故障高损伤和低故障识别率,提出一种基于变分模态分解样本熵和长短期记忆网络的输电线路故障预警方法,以提高故障预警的及时性和可靠性.首先,利用VMD进行三相电压信号分解得到一系列模态分量;然后,利用样本熵提取故障特征,提高故障特征相关性;最后,采用贝叶斯优化调参改进长短期记忆网络性能,优化输电线路故障诊断模型,提高模型收敛速度和预测精度.仿真结果表明,与Wavelet+BP、Wavelet+SVM、Wavelet+Whale+ELM相比,VMD+BLSTM具有最高的输电线路故障诊断率,迭代次数少、噪声鲁棒性更好.
Transmission Line Fault Diagnosis Based on Variational Modal Decomposition and Long and Short Term Memory Network
In order to improve the timeliness and reliability of fault early warning,a fault early warning method based on variational mode decomposition(VMD)sample entropy and long short term memory network is proposed.Firstly,VMD is used to decompose the three-phase voltage signal to obtain a series of modal components.Then,sample entropy is used to extract fault features to improve the correlation of fault features.Finally,Bayesian optimization parameter tuning is used to improve the performance of long and short term memory network,optimize the fault diagnosis model of transmission lines,and improve the convergence speed and prediction accuracy of the model.The simulation results show that VMD+BLSTM has the highest fault diagnosis rate of transmission lines,fewer iterations and better noise robustness,compared with Wavelet+BP,Wavelet+SVM,and Wavelet+Whale+ELM.

transmission linevariational mode decompositionBLSTMfault diagnosis

杨东宁、高雪林、师智良、陈恩邦

展开 >

云南电网有限责任公司信息中心,云南 昆明 650217

昆明能讯科技有限责任公司,云南 昆明 650217

输电线路 变分模态分解 BLSTM 故障诊断

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(3)