首页|基于CEEMDAN混合WTD-XGBoost-LSTM的电厂锅炉主蒸汽压力预测

基于CEEMDAN混合WTD-XGBoost-LSTM的电厂锅炉主蒸汽压力预测

扫码查看
提出了一种电厂锅炉主蒸汽压力预测的方法,该方法基于自适应噪声完备集合经验模态分解CEEMDAN,并对复杂高频分量进行小波降噪WTD处理,随后针对不同分量特征分别构建极限梯度提升XGBoost和长短时记忆LSTM网络模型进行预测,最后叠加获得最终预测结果.并选择多种对比模型,使用实测数据对比预测效果.结果表明,所提模型在时间滞后性和预测准确性方面均优于其他模型,具有较强的工程应用意义.
Prediction of Main Steam Pressure of Power Plant Boiler Based on CEEMDAN Combined with WTD-XGBoost-LSTM
A method for the prediction of main steam pressure in power plant boilers is proposed,which is based on complete ensemble empical mode deocmposition with adaptive noise(CEEMDAN)and using wavelet threshold denoising(WTD)for noise reduction of the high-frequency component IMF1,followed by prediction using extreme gradient boosting(XGBoost)and long short-term memory(LSTM)network respectively,according to the fluctuating form of the component.Finally,the main steam pressure prediction is realized by su-perimposing the output values of each model.Multiple comparison models are selected and the prediction results with real data.The re-sults show that the model proposed is better than other models in terms of time lag and prediction accuracy,and has strong significance for engineering applications.

power plant boilerpressure predictionCEEMDANXGBoostWTDLSTM

王宇冬、李家翰、岳显、邹明衡

展开 >

国能陈家港发电有限公司,江苏 盐城 224631

东南大学能源与环境学院,江苏 南京 210096

电厂锅炉 压力预测 CEEMDAN XGBoost WTD LSTM

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(3)