首页|基于混沌性分析和长短期记忆神经网络的光伏功率预测方法

基于混沌性分析和长短期记忆神经网络的光伏功率预测方法

扫码查看
为了提高复杂环境下光伏功率数据的预测精度,针对光伏功率序列中存在的随机性和不确定性问题,提出了基于混沌性分析和长短期记忆神经网络(LSTM)的预测方法.混沌性分析方法包括集合经验模态分解(EEMD)和相空间重构,EEMD用于分解光伏功率序列,降低原始序列的复杂程度,相空间重构将原一维序列重构为高维状态空间下的序列,有利于提升预测精度.LSTM具有较为复杂的机制,更适合用于预测不确定性的时间序列.另外将光伏功率分为平稳型和非平稳型数据,并对这两类数据分别建立预测模型进行预测.实验结果表明,所提方法对比单一类型的预测模型和其他组合模型,都有不同程度的优势.
Photovoltaic Power Prediction Method Based on Chaos Analysis and Long Short-Term Memory Neural Network
Targeting at the randomness and uncertainty in photovoltaic power series,a prediction method based on chaos analysis and long short-term memory neural network(LSTM)is proposed to improve the prediction accuracy of photovoltaic power in complex environment.Chaos analysis methods include ensemble empirical mode decomposition(EEMD)and phase space reconstruction.EEMD is used to decom-pose photovoltaic power sequence and reduce the complexity of the original sequence.Phase space reconstruction reconstructs the original one-dimensional sequence into a sequence in high-dimensional state space,which is conducive to improving the prediction accuracy.LSTM has a more complex mechanism,which is more suitable for predicting uncertain time series.In addition,photovoltaic power is divided into stationary and non-stationary data,and prediction models for these two kinds of data are established.The experimental results show that the proposed method has different advantages over the single type prediction model and other combined models.

photovoltaic powerchaos analysisLSTMEEMDphase space reconstruction

韩光、吴向明、李晓军、李安燚

展开 >

国网河北省电力有限公司,河北 石家庄 050000

国网河北省电力有限公司电力科学研究院,河北 石家庄 050021

光伏功率 混沌性分析 LSTM EEMD 相空间重构

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(3)