首页|基于贝叶斯优化ARIMA-CNN-GRU深度算法的楼宇负荷预测研究

基于贝叶斯优化ARIMA-CNN-GRU深度算法的楼宇负荷预测研究

扫码查看
楼宇能耗预测问题对降低能量消耗与实现合理功能至关重要.为解决楼宇能耗复杂多变的问题,采用ARIMA模型求解能耗曲线非线性部分,再通过CNN-GRU深度学习模型拟合非线性残差,并且采用贝叶斯优化算法对深度模型进行超参优化.基于不同楼宇负荷曲线的预测结果证明,贝叶斯优化算法能够提升模型精度 3 倍以上,所提出的ARIMA-CNN-GRU算法针对不同类型的楼宇负荷曲线预测的最大误差控制在7%以内,比通过CNN-GRU网络直接预测楼宇负载曲线精度提升 2 倍,能够满足不同楼宇负荷的预测.
Research on Building Load Forecasting Based on ARIMA-CNN-GRU Neural Network and Bayesian Optimization
Building energy consumption prediction is essential for energy consumption reduction and function rationalization.To solve the complex and changeable problems of building energy consumption,ARIMA model is used to solve the nonlinear part of the energy consumption curve,then CNN-GRU depth learning model is used to fit the nonlinear residuals,and Bayesian optimization algorithm is adopted for hyperparametric optimization.The prediction results based on load curves of different buildings prove that the Bayesian opti-mization algorithm can improve the accuracy of the model by more than 3 times,the maximum error of ARIMA-CNN-GRU algorithm pro-posed for different types of building load curve prediction is controlled within 7% .The accuracy value is 2 times higher than that of building load curve direct predicted through the CNN-GRU network,meeting the prediction of different building loads.

intelligent buildingBayesian optimizationARIMACNN-GRUload forecast

张航通、曹刚、李静雅、仲振、马俞瑞、丁书剑

展开 >

国网江苏省电力有限公司南京供电分公司,江苏 南京 210024

南京苏逸实业有限公司,江苏 南京 210008

东南大学南京江北新区创新研究院,江苏 南京 210031

西北工业大学物理科学与技术学院,陕西 西安 710072

展开 >

智能楼宇 贝叶斯优化 自回归移动平均模型 卷积-递归神经网络 载荷预测

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(4)