首页|基于ESRGCNN的单帧红外图像超分辨率重建算法

基于ESRGCNN的单帧红外图像超分辨率重建算法

扫码查看
红外图像的超分辨率重建算法研究是近年来图像处理算法领域的研究重点,现有的具有较强学习能力的卷积神经网络(Convolutional Neural Networks,CNNs)在改善图像超分辨率重建效果的同时会增加计算成本,而后续提出的具有浅层结构的增强组卷积神经网络超分辨率重建方法(Enhanced Super-Resolution Group Convolutional Neural Network,ESRGCNN)在可见光图像的超分辨率重建中不仅节省成本且效率高.所以针对红外图像分辨率差、对比度低等不足,将经过预处理的红外图片通过高频纹理细节提取、重建等操作后得到的高分辨率纹理细节图与经过ESRGCNN网络得到红外图像的高频细节层、基层分别进行权重构建、CLAHE处理后进行加权融合得到最终的超分辨率红外图像.通过在红外数据集CVC-14 进行大量对比实验,表明所提出的优化算法在三种倍率重建图像的PSNR优于经典算法约 13.7%~32.4%,其重建效果的SSIM优于经典算法约 13.9%~32.4%.
Super Resolution Reconstruction Algorithm of Single Frame Infrared Image Based on ESRGCNN
Super-resolution reconstruction algorithm of infrared image is the research focus in the field of image processing algorithm in recent years.The existing convolutional neural networks(CNNs)with strong learning ability will improve the effect of image super-resolu-tion reconstruction while increasing the computational cost,and the subsequently proposed enhanced super-resolution group convolutional neural network(ESRGCNN)with shallow structure not only saves cost but also has high efficiency in the super-resolution reconstruction of visible images.Therefore,in view of the shortcomings such as poor resolution and low contrast of infrared images,the final super resolution infrared image is obtained by weight construction of the high resolution texture detail image obtained from the preprocessed infrared image through high-frequency texture detail extraction,reconstruction and other operations,and the high-frequency detail layer and base layer of the infrared image obtained through ESRGCNN network,and weight fusion after CLAHE processing.A large number of comparative experi-ments on the infrared dataset CVC-14 show that the PSNR of the optimized algorithm proposed is about 13.7%-32.4% better than that of the classical algorithm in three kinds of magnification reconstruction images,and the SSIM of its reconstruction effect is about 13.9%-32.4% better than that of the classical algorithm.

infrared imagesuper resolution reconstructionweighted fusionESRGCNNCLAHE

张祖漪、于殿泓、朱文杰、柳禹朴

展开 >

西安理工大学机械与精密仪器工程学院,陕西 西安 710048

红外图像 超分辨率重建 加权融合 ESRGCNN CLAHE

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(4)