首页|基于改进YOLOv4 网络的红外遥感小目标检测方法

基于改进YOLOv4 网络的红外遥感小目标检测方法

扫码查看
针对传统检测方法对红外小目标检测性能不足的问题,提出一种基于迁移学习与改进YOLOv4 网络的红外小目标检测系统.首先,对YOLOv4网络主干网提取的浅层特征进行增强,并结合深层特征与浅层特征来缓解红外小目标难以检测的问题;其次,为YOLOv4网络的检测头模块增加注意力机制,使网络关注于特征图中的红外小目标,从而降低背景对小目标检测的干扰;最终,在YOLOv4网络的训练过程中加入迁移学习方法,从而解决红外小目标标注训练数据不足的问题.基于公开红外小目标检测数据集的实验结果表明,该系统有效提高了YOLOv4网络对红外小目标的检测性能,且优于其他的对比检测模型.
Infrared Remote Sensing Small Target Detection Method Based on Improved YOLOv4 Network
Targeting at the poor performance of traditional detection methods for infrared small target,a transferring learning and improved YOLOv4 network based infrared small target detection system is proposed.Firstly,the shallow features extracted by backbone of YOLOv4 network are enhanced,and the difficulty of infrared small target detection is reduced with combination of shallow features and deep features.Secondly,an attention mechanism is introduced to the detection head of YOLOv4 network to help the network focus on infra-red small targets of the feature maps,thus,the background interference to small target detection is reduced.Finally,the transferring learn-ing method is introduced to the training process of YOLOv4 network to solve the problem of lack of labeled training data for infrared small target detection.Experimental results based on public infrared small target detection dataset show that the proposed system improves the detection performance of YOLOv4 network for infrared small target,it also outperforms the other compared detection models.

deep learninginfrared remote sensingtarget detectiontransferring learningdeep neural networkone stage detection model

马玉磊、钟潇柔

展开 >

新乡学院继续教育学院,河南 新乡 453000

新乡学院计算机与信息工程学院,河南 新乡 453000

深度学习 红外遥感 目标检测 迁移学习 深度神经网络 单阶段检测模型

河南省科技厅重点研发与推广专项(科技攻关)项目2022年度新乡学院教育教学改革研究与实践项目

21210221040531

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(4)