首页|基于改进高分辨率网络的三维人体姿态估计方法

基于改进高分辨率网络的三维人体姿态估计方法

扫码查看
针对现实场景中复杂背景下的遮挡和人体关键点飘移等问题,提出一种自上而下的两阶段人体姿态估计方法.首先使用改进的YOLO和SORT进行二维人体检测和跟踪,对YOLOv3 网络结构、损失函数及先验框尺寸进行改进,增强网络检测能力和特征表达能力,提高在人体目标检测方面的适用性和准确性;其次利用融入注意力机制的HRNet进行二维姿态估计,对原有的残差模块进行特征增强,加强不同尺度下多层特征之间的跨通道信息交流,提高被遮挡关键点的识别效果.最后利用图注意力时空卷积网络,回归生成三维姿态.实验结果表明,平均(每)关节位置误差和基于普鲁斯特分析的平均(每)关节位置误差分别为 45.0 mm和 35.4 mm,在严重遮挡情况下,仍可获得准确的人体关键点位置.
3D Human Pose Estimation Method Based on Improved High Resolution Network
In order to solve the problems of occlusion and human key point movement under complex background in real scenes,a top-down two-stage human pose estimation method is proposed.Firstly,the improved YOLO and SORT are used for two-dimensional human de-tection and tracking,and the YOLOv3 network structure,loss function and prior frame size are improved to enhance the network detection ability and feature expression ability,and improve the applicability and accuracy of human target detection.Secondly,HRNet integrated with attention mechanism is used for 2D attitude estimation,and the original residual module is featured to enhance the cross-channel in-formation exchange between multi-layer features at different scales and improve the recognition effect of blocked key points.Finally,GAST-NET is used to generate 3D posture.The experimental results show that mean per joint position error and procrustes analysis mean per joint position error are 45.0 mm and 35.4 mm respectively.Under the condition of serious occlusion,the accurate position of human key points can still be obtained.

attitude estimationmulti-scale feature fusionattention mechanism3D key points

闻举、伊力哈木·亚尔买买提

展开 >

新疆大学电气工程学院,新疆 乌鲁木齐 830017

姿态估计 多尺度特征融合 注意力机制 三维关键点

国家自然科学基金项目国家自然科学基金项目

6186603761462082

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(4)