首页|基于ZYNQ平台的SVM分类器设计与实现

基于ZYNQ平台的SVM分类器设计与实现

扫码查看
研究基于Xilinx HLS高层次综合工具的SVM分类器设计,并在ZYNQ 7020 平台上搭建水声信号特征分类系统对设计的SVM IP核进行测试.首先用 500 组水声信号特征在MATLAB中训练SVM分类网络,然后用C语言编写SVM网络分类算法,经HLS综合生成IP核.实验结果表明:所设计的基于ZYNQ平台的SVM分类器能够实现对水声信号特征值矩阵的分类,对一段水声信号特征进行有无目标分类的平均用时为 6.86 μs,仅为在MATLAB上运行SVM算法的 1.1%,分类准确率可达99.31%.同时资源占用量少,仅为ZYNQ 7020 中FPGA总资源量的 10%(4 347 个LUT).
Design and Implementation of SVM Classifier Based on ZYNQ Platform
A new design of SVM classifier based on Xilinx HLS high-level synthesis tool is studied,and an underwater acoustic signal feature classification system is built on ZYNQ 7020 platform to test the designed SVM IP core.First,the SVM classification network is trained by using 500 groups of acoustic signal features on MATLAB.Then,the SVM classification algorithm is programmed in C lan-guage,and the IP core is generated by HLS synthesis.The experimental results show that the hardware acceleration system of SVM based on ZYNQ platform can classify the matrix of the underwater acoustic signal features,and the average time for classifying a section of underwater acoustic signal features with or without targets is 6.86 μs,which is only 1.1%of the time taken for the SVM algorithm run on MATLAB,while the classification accuracy can reach 99.31%.The resource consumption is only 10%of the total FPGA resources in ZYNQ 7020(4 347 LUTs).

SVMIP coreZYNQhigh-level synthesis

鲍温霞、黄敏、肖仲喆

展开 >

苏州大学光电科学与工程学院,江苏 苏州 215006

支持向量机 IP核 ZYNQ 高层次综合

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)