首页|基于跨层非局部融合和DeepLabV3+的PCB图像分割算法

基于跨层非局部融合和DeepLabV3+的PCB图像分割算法

扫码查看
针对PCB图像在分割过程中出现的目标边缘平滑度低、连续性差、分割效率低等问题,提出一种结合注意力机制的轻量级图像分割模型.首先,利用MobileNetV2 网络对图像进行深度特征提取;其次,将特征的一个分支输入到空洞空间金字塔池化模块进行多尺度特征提取并融合得到高层特征;最后,引入跨层非局部模块,将另一分支经过卷积得到的底层特征和上述高层特征融合.该方法的平均交并比为 96.176%,准确率为 97.59%,召回率为 95.912%,分割速度为 0.062 s,参数量为25.39 Mbyte.方法考虑了图像中小目标检测问题及边界信息损失,提高了图像分割的准确性和实时性.
PCB Image Segmentation Algorithm Based on Cross-Layer Non-Local Fusion and DeepLabV3+
For the issues of low smoothness,poor continuity and low segmentation efficiency of target edges in the PCB image segmenta-tion process,a lightweight image segmentation model combining attention mechanism is proposed.First,a MobileNetV2 network is used for deep feature extraction.Second,a branch of the features is input to the void space pyramid pooling module for multi-scale feature ex-traction and fused to obtain high-level features.Finally,a cross-layer non-local module is introduced to fuse the bottom-level features ob-tained by convolution through another branch with the above high-level features.The mean intersection over union of the method is 96.176%,the precision is 97.59%,the recall is 95.912%,the segmentation speed is 0.062 s,and the number of parameters is 25.39 Mbyte.The proposed method takes into account the problem of small target detection and boundary information loss in the image,and improves the accuracy and real-time performance of image segmentation.

PCBattention mechanismimage segmentationatrous spatial pyramid poolingcross-layer non-local module

王守印、陈健、万佳泽、林丽、张定恒、何栋炜、刘丽桑、曹新容

展开 >

福建理工大学电子电气与物理学院,福建 福州 350118

闽江学院计算机与大数据学院,福建 福州 350121

PCB 注意力机制 图像分割 空洞空间金字塔池化 跨层非局部模块

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)