首页|基于卷积循环神经网络的新型电力系统继电保护故障诊断技术

基于卷积循环神经网络的新型电力系统继电保护故障诊断技术

扫码查看
随着新型电力系统建设的推进,分布式新能源容量大幅度提升,越来越多的电力电子设备接入电网中,导致短路时的故障特征发生本质变化,传统的继电保护故障诊断技术难以适用.为提高新型电力系统保护的准确性,提出一种基于卷积循环神经网络的新型电力系统继电保护故障诊断技术.首先,使用小波变换提取出故障电流时频特性作为网络的输入数据;然后,设计包含卷积神经网络和双向门控循环单元的卷积循环神经网络算法,利用卷积神经网络对输入的故障数据进行特征提取,双向门控循环单元对特征中的动态序列关系进行挖掘;最后,使用Softmax分类器进行故障分类,完成故障诊断.经过实验表明,所提方法在新型电力系统下的故障诊断率能够达到 99.6%,与常见的卷积神经网络和前馈神经网络相比,分别提升了8.2%和 9.7%,证明所提方法具有更高的故障诊断准确率.
A Novel Fault Detection Technology for Power System Relay Protection Based on Convolutional Recurrent Neural Network
With the advancement of the construction of new power systems,the capacity of distributed new energy has significantly in-creased,and more and more power electronic devices are connected to the power grid,resulting in essential changes in fault characteris-tics during short circuits.Traditional relay protection fault detection technology is difficult to apply.To improve the accuracy of new power system protection,a novel power system relay protection fault detection technology based on convolutional recurrent neural network is proposed.Firstly,wavelet transform is used to extract the time-frequency characteristics of fault currents as input data for the network.Then,a convolutional recurrent neural network algorithm is designed that includes convolutional neural networks and bidirec-tional gated recurrent units.The convolutional neural network is used to extract features from the input fault data,while the bidirectional gated recurrent units mine dynamic sequence relationships in the features.Finally,Softmax classifier is used for fault classification and the process of fault detection is completed.The experiment shows that the fault detection rate of the proposed method can reach 99.6%in the new power system,which is 8.2%and 9.7%higher than the common convolutional neural network and feedforward neural net-work,respectively,which proves that the proposed method has higher fault detection accuracy.

new power systemsdistributed new energyrelay protectionfault detectionconvolutional recurrent neural network

杨阳、匡子靓、尚文、李武龙

展开 >

国网山西省电力公司新荣供电公司 山西 新荣 037000

国网山西省电力公司大同供电公司 山西 大同 037008

北京中恒博瑞数字电力科技有限公司,北京 100085

新型电力系统 分布式新能源 继电保护 故障诊断 卷积循环神经网络

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)