首页|基于熵权融合算法与加权支持向量机的变压器故障短期识别方法

基于熵权融合算法与加权支持向量机的变压器故障短期识别方法

扫码查看
研究基于熵权融合算法与加权支持向量机的变压器故障短期识别方法,提升变压器故障短期识别效果.通过无源RFID传感器采集变压器的短期数据,对数标准化处理采集的短期数据.利用熵权融合算法,为对数处理后的短期数据赋予权值,输入支持向量机内,建立加权支持向量机.通过引入自学习因子与比例权重系数,改进蝙蝠算法.采用改进蝙蝠算法优化加权支持向量机参数.在参数优化后的加权支持向量机内输入赋予权值的短期数据,输出变压器故障短期识别结果.实验证明:所提方法可有效采集短期故障的变压器数据,合理对数处理采集的数据,令数据分布更加均匀.所提方法可精准识别变压器短期故障.在不同故障场景下,所提方法识别变压器短期故障的平均绝对百分比误差均较低,具备较高变压器故障短期识别精度.
Short-Term Recognition Method of Transformer Fault Based on Entropy Weight Fusion Algorithm and Weighted Support Vector Machine
The short-term recognition method of transformer fault based on entropy weight fusion algorithm and weighted support vector machine is studied to improve the short-term recognition effect of transformer fault.The passive RFID sensor is used to collect the short-term data of the transformer,and the logarithmic standardized processing of the collected short-term data is performed.The entropy-weight fusion algorithm is used to assign weights to short-term data after logarithmic processing and the corresponding data are input into support vector machine to establish weighted support vector machine.The bat algorithm is improved by introducing self-learning factor and proportional weight coefficient.The parameters of weighted support vector machine are optimized by using improved bat algorithm.After parameter optimization,the weighted support vector machine is used to input the weighted short-term data and output the short-term recognition results of transformer faults.Experimental results show that the proposed method can effectively collect transformer data of short-term faults,process the collected data reasonably logarithmically,and make the data distribution more uniform.The proposed method can accurately identify transformer short-term faults.In different fault scenarios,the average absolute percentage error of the method is low,and it has a high short-term transformer fault identification accuracy.

entropy weight fusion algorithmsupport vector machinetransformer failureshort-term recognitionlogarithmic processingbat algorithm

苑龙祥、张亮、卢俊

展开 >

国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830011

国网新疆电力有限公司,新疆 乌鲁木齐 830011

熵权融合算法 支持向量机 变压器故障 短期识别 对数处理 蝙蝠算法

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)