首页|电力调度专业语言理解混合神经网络建模方法

电力调度专业语言理解混合神经网络建模方法

扫码查看
为了提升电力调度专业语言理解准确率和泛化性,提出电力调度专业语言理解混合神经网络建模方法.首先基于BERT预训练模型将调度专业语言转化为低维词向量,通过微调BERT超参数增强对调度专业语言的表征能力,然后在BERT后接入CRF层提升调度专业语言槽位标签全局识别能力,基于文本卷积神经网络(TextCNN)训练调度专业语言与操作意图间的映射关系,联合意图和槽位识别结果实现调度专业语言理解.最后通过某调控中心调度专业语言验证,所提调度专业语言理解方法具有较高的理解准确率,与其他方法相比调度意图和槽位信息识别的平均F1 值分别高出 3.41%、3.99%.
Hybrid Neural Network Modeling Method for Professional Language Understanding of Electric Power Dispatching
In order to improve the accuracy and generalization of power dispatch professional language understanding,a hybrid neural network modeling method for professional language understanding of electric power dispatching is proposed.First,the dispatch profes-sional language is represented as a low-dimensional feature vector based on the pre-trained BERT model.The characterization ability of dispatch professional language is enhanced by fine-tuning the initial BERT parameters.Then the recognition ability of dispatch profes-sional language slot label is improved from the overall situation to access the CRF layer in the neural network.The mapping relationship between scheduling professional language and scheduling intention is trained based on text convolutional neural network(TextCNN).The dispatch professional language understanding is realized by the joint multi-model recognition results.Finally,through the verification of power dispatch professional language of a control center,it is found that the proposed professional language understanding method has higher understanding accuracy,and the mean F1 values for dispatching intention and slot recognition are 3.41%and 3.99%,respective-ly,higher than those of other methods.

power dispatchhybrid neural networkintention recognitionentity recognitionsemantic understanding

赵磊、张越、蒙飞、常鹏、杨宏、单连飞、乔咏田

展开 >

国网宁夏电力有限公司调度控制中心,宁夏 银川 750001

北京科东电力控制系统有限责任公司,北京 100192

电力调度 混合神经网络 意图识别 实体识别 语义理解

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)