首页|基于自适应图聚类和BAS算法的大型海上风电场功率优化策略

基于自适应图聚类和BAS算法的大型海上风电场功率优化策略

扫码查看
针对大规模海上风电场(Offshore wind farm,OWF)及其复杂的尾流效应对集中式控制带来的影响,提出一种改进天牛须搜索算法的分布式非凸优化控制策略,以提高OWF的功率转换.首先,提出了一种自适应阈值算法,用于建立尾流自适应修剪有向图,同时保留风力发电机之间关键的尾流传播关系;其次,利用尾流自适应修剪图约束创建子有向图,将风电场划分为无耦合的聚类通信子集;在此基础上,以OWF输出功率最大功率为目标,风电机组的偏航角和轴向系数为优化变量,提出基于蒙特卡洛-天牛须搜索(MC-BAS)算法的风电场功率优化策略.最后,仿真结果表明,与集中式控制方法相比,所提算法在降低计算成本的同时可以提高功率转换效率.
Power Optimization Strategy for Large Offshore Wind Farms Based on Adaptive Graph Clustering and BAS Algorithm
To address the challenges posed by large-scale offshore wind farms(OWFs)and their complex wake effects on centralized control,a distributed non-convex optimization control strategy,enhanced by an improved beetle antennae search algorithm is proposed to optimize power conversion in OWFs.Initially,an adaptive threshold algorithm is developed to establish a wake adaptive pruning directed graph,effectively maintaining essential wake propagation relationships between wind turbines.Subsequently,by utilizing the constraints of the wake adaptive pruning graph,a sub-directed graph is generated,dividing the wind farm into decoupled clustering communication subsets.On this foundation,targeting the maximization of OWF's output power,with the yaw angle and axial coefficient of wind turbines as the optimization variables,a power optimization strategy for the wind farm based on the Monte Carlo-beetle antennae search(MC-BAS)algorithm is introduced.The simulation results demonstrate that compared to traditional centralized control methods,the pro-posed algorithm significantly reduces computational costs while enhancing power conversion efficiency.

beetle antennae search optimizationwake propagationdirect graphoffshore wind farmclustering subsetgraph adaptive pruning

行九晖、翟健帆、张超、陈炜煜

展开 >

中广核新能源投资(深圳)有限公司华南分公司,广东 深圳 518000

中国广核新能源控股有限公司,北京 100071

天牛须搜索算法 尾流传播 有向图 海上风电场 聚类子集 尾流自适应修剪图

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)