首页|基于模型样本加权的电力负荷预测方法

基于模型样本加权的电力负荷预测方法

扫码查看
为了解决在电力负荷预测算法中由于对数据样本采用相同权重而导致的不利泛化效果,提出了一种基于样本加权的新型负荷预测方法,该方法在训练过程中引入加权训练损失优化模型,在优化过程中使用样本的梯度和影响函数来确定样本的权重.这种加权的方式有助于调整模型的拟合,使其更好地适应那些被加权的样本,提高模型的泛化性能.在确定性预测情景下,通过对真实负荷数据集进行线性模型和人工神经网络的案例研究,验证了所提方法的可行性和有效性.
Electric Load Forecasting Based on Model Sample Re-Weighting Method
To address the adverse generalization effects caused by assigning equal weights to data samples in the electric load forecasting algorithm,a novel load prediction method based on sample weighting is proposed.In this approach,gradients and impact functions of samples are utilized during the training process to determine their respective weights.This weighting method aids in adjusting the model's fitting,allowing it to better adapt to those samples that are weighted,thereby enhancing the model's generalization performance.In deterministic prediction scenarios,through case studies involving linear models and artificial neural networks applied to real load datasets,it is observed that allocating different weights to diverse samples can further improve prediction accuracy.

electric load forecastingsample weightingempirical risk minimization

荆世博、陈伟伟、曹茜、于志勇、李忠政

展开 >

国网新疆经研院,新疆 乌鲁木齐 830002

电力负荷预测 样本加权 经验风险最小化

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)