首页|大数据实验平台下面向用户创建容器的资源调度算法优化

大数据实验平台下面向用户创建容器的资源调度算法优化

扫码查看
目前大数据实验平台中容器管理的资源调度算法并不能满足面向用户的要求.应用Docker Swarm容器管理工具,对布谷鸟算法进行改进,提出一种面向用户的容器管理的资源调度算法(CSFU).其核心思想是从用户的角度出发,应用莱维飞行找到适应度最小的物理节点,然后将同一用户创建的容器放入同一物理节点中.最后与Docker Swarm 3 种原生调度算法分别进行实验对比,CSFU算法在负载均衡及集群的部署速度上表现更优.并运行KNN、k-Means算法,实验证明CSFU算法下同一集群容器之间有着更小的网络延迟且能使算法更快地收敛.
Resource Scheduling Algorithm Optimization for Creating Containers for Users Under Large Data Experimental Platform
Current resource scheduling algorithms for container management in large data experimental platform can not meet user-orien-ted requirements.A resource scheduling algorithm for user-oriented container management,Cuckoo Search For User(CSFU),is proposed by using the Docker Swarm container management tool and improving the cuckoo algorithm.The core idea is to use Levy-flight to find the fittest physical node from the user's perspective,and then put the container created by the same user into the same physical node.Finally,compared with three native scheduling algorithms of Docker Swarm,the CSFU algorithm performs better in load balancing and cluster deployment speed.The KNN and k-Means algorithms are run.Experiments show that there is less network latency and faster convergence between the same cluster container under the CSFU algorithm.

Levy flightuser-orientedCSFUDocker SwarmCS

刘翔、李海荣、方中纯

展开 >

内蒙古科技大学信息工程学院,内蒙古 包头 014010

内蒙古科技大学工程训练中心(创新创业教育学院),内蒙古 包头 014010

莱维飞行 面向用户 CSFU Docker Swarm CS

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)