首页|基于滤波和改进灰狼算法的葡萄储藏时间鉴别方法研究

基于滤波和改进灰狼算法的葡萄储藏时间鉴别方法研究

扫码查看
研究了一种基于电子鼻系统的葡萄储藏时间鉴别方法.实验对不同储藏时间的葡萄进行理化指标检测,利用电子鼻获取不同储藏时间的葡萄样品的挥发性气味信息,运用了主成分分析方法、核主成分分析方法和基于最小二乘平滑滤波的改进灰狼优化支持向量机对葡萄的挥发性气味信息进行提取分析,建立不同储藏时间的葡萄检测分类模型.结果显示:核主成分分析对不同储藏时间的葡萄区分效果更优.基于最小二乘平滑滤波的改进GWO-SVM分类方法的准确率、精确度、召回率、F1 值分别达到了 97.56%、97.59%、97.58%和 97.59%,其分类性能指标高于其他分类方法,并具有较好的稳定性,可为实际应用中葡萄的储藏时间鉴别问题提供一定的参考.
Research on Grape Storage Time Identification Method Based on Filtering and Improved Grey Wolf Algorithm
A method of grape storage time identification based on electronic nose system is studied.In the experiment,the physical and chemical indexes of grapes with different storage time are detected,and the volatile odor information of grape samples with different stor-age time is obtained by using electronic nose.The principal component analysis method,kernel principal component analysis method and improved grey wolf optimized support vector machine based on least squares smoothing filter are used to extract and analyze the vol-atile odor information of grapes,and the detection and classification model of grapes with different storage time is established.The re-sults show that nuclear principal component analysis is more effective in distinguishing grapes with different storage time.The accuracy,precison,recall and F1 value of the improved GWO-SVM classification method based on the least squares smoothing filter reach 97.56%,97.59%,97.58%and 97.59%respectively.Its classification performance index is higher than those of other classification methods,and has good stability,which can provide a reference for the identification of grape storage time in practical applications.

electronic noseprincipal component analysisfilteringGrey Wolf Algorithmsupport vector machine

叶杏雨、张建锋

展开 >

浙江农林大学数学与计算机科学学院,浙江 杭州 311300

浙江农林大学光机电工程学院,浙江 杭州 311300

电子鼻 主成分分析 滤波 灰狼算法 支持向量机

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)