首页|基于YOLOX的探地雷达城市地下目标检测方法

基于YOLOX的探地雷达城市地下目标检测方法

扫码查看
探地雷达(GPR)因其无损、高效以及浅层高分辨率的优势被广泛应用于城市道路检测中.但是,GPR的数据解释主要依靠专家经验,费时费力,且误判、漏判率大.提出一种基于YOLOX深度学习网络的城市地下目标自动检测方法,以实现GPR数据的自动解译.该方法利用YOLOX网络能够同时实现自动提取特征和自动定位目标位置的能力,对GPR图像中的典型城市地下目标(空洞、电缆和管道等)进行检测.由于GPR数据量较小,首先利用COCO公开数据集对YOLOX进行预训练,然后利用迁移学习,在室内实验室采集的GPR数据集上进行参数微调,最后将训练好的YOLOX网络用于地下目标的定位和识别.实验结果表明,该方法能够实现小数量级GPR数据的精确目标检测,平均精度均值mAP(0.75)可达 82.1%,检测速度可满足实时检测要求,且该方法在检测精度方面优于现有方法.
Urban Underground Target Detection from Ground Penetrating Radar Images Using YOLOX
Ground penetrating radar(GPR)has been widely used in urban road detection due to its non-destructive,high efficiency,and high resolution characteristics.However,its data interpretation mainly relies on experts'experience,which is time-consuming and laborious,and will lead to a large rate of misjudgment and missed judgment.An automatic urban underground target detection method based on YOLOX is proposed to realize the automatic interpretation of GPR data.This method uses the YOLOX network,which has the ability of simultaneously automatic feature extraction and automatic target location,to realize the detection of typical urban underground targets(cavities,cables,and pipes)in GPR images.Since the amount of GPR data is small,the network is first pre-trained on the COCO public dataset,and then the parameters are fine-tuned on the GPR dataset collected in the indoor laboratory by using transfer learning.Fi-nally,the trained YOLOX network is used to locate and identify underground targets.Experimental results show that the proposed method can accurately detect urban underground targets under small samples.The mean average precision(mAP(0.75))can reach 82.1%and it can realize real-time detection.Moreover,the proposed method outperforms the state-of-the-art methods in terms of detection precision.

ground penetrating radarurban underground target detectiondeep learningYOLOXtransfer learning

王海亮、刘丽、徐航、李静霞、王冰洁

展开 >

太原理工大学新型传感器与智能控制教育部和山西省重点实验室,山西 太原 030024

太原理工大学物理与光电工程学院,山西 太原 030024

探地雷达 城市地下目标检测 深度学习 YOLOX 迁移学习

2024

电子器件
东南大学

电子器件

CSTPCD
影响因子:0.569
ISSN:1005-9490
年,卷(期):2024.47(6)