首页|深度学习在医院财务管理中的应用与实践

深度学习在医院财务管理中的应用与实践

扫码查看
为提高医院财务信息管理能力,构建了一种结合主成分分析(Principal Component Analysis,PCA)和变分自编码器(Variational Auto-Encoders,VAE)的异常检测模型.基于收集和预处理财务数据,通过PCA进行特征提取,利用VAE学习数据的潜在分布,并通过k折交叉验证提高模型的预测性能.实验结果显示,在训练集与测试集比例为9∶1的情况下,PCA-VAE在异常检测任务中表现出了优秀的性能,其精度、召回率和F1得分分别为0.946 7、0.942 1和0.944 4,显著优于传统机器学习算法和结合PCA方法的分类模型.
Application and practice of deep learning in hospital financial management
In order to improve the hospital financial information management ability,an anomaly detection model combining Principal Component Analysis(PCA)and Variational Auto-Encoders(VAE)is constructed.Based on collection and preprocessing financial data,feature extraction by PCA,learning the potential distribution of data using VAE and improving the predictive performance of the model by k-fold cross-validation.The experimental results showed that PCA-VAE showed excellent performance in the anomaly detection task with the training set ratio of 9∶1,with its accuracy,recall and F1 scores of 0.946 7,0.942 1 and 0.944 4,respectively,significantly outperforming traditional machine learning algorithms and classification models combining PCA methods.

financial managementPrincipal Component AnalysisVariational Auto-Encodersanomaly detection

竺三子、孙训、马哲文

展开 >

宣城市人民医院财务科,安徽宣城 242000

宣城市人民医院经管科,安徽宣城 242000

财务管理 主成分分析 变分自编码器 异常检测

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(1)