首页|平面近场测量中一种极化探头补偿算法研究

平面近场测量中一种极化探头补偿算法研究

扫码查看
为研究天线特性,该研究采用近场测量技术计算天线的远场方向图,该技术具有成本低、速度快的优势.考虑到平面近场测量中探头参数对远场方向图的影响,该研究基于平面近远场变换算法,引入探头补偿技术和极化补偿技术.利用HFSS仿真得到待测天线远场仿真方向图,通过计算机算法构建,将近远场变换算法所得方向图与实际测得的远场方向图进行比较,验证算法的准确性.进一步结合极化补偿算法与探头补偿算法,与未修正的结果及远场方向图进行对比.结果显示,极化探头补偿算法能有效修正探头对远场方向图的影响,其不确定度超过近远场变换算法1.429 5 dB,超过极化补偿算法0.906 2 dB,确保了研究的客观性和独立性.
Research on a polarization probe compensation algorithm in planar near-field measurement
To study the characteristics of antennas,this paper employs near-field measurement techniques to compute the far-field radiation pattern of the antenna,offering the advantages of low cost and speed.Recognizing the influence of probe parameters in planar near-field measurements on the far-field radiation pattern,this research is based on the planar near-to-far-field transformation algorithm,incorporating probe compensation techniques and polarization compensation techniques.Using HFSS simulation,the far-field simulated radiation pattern of the antenna under test is obtained.By constructing the algorithm,the radiation pattern obtained from the near-to-far-field transformation algorithm is compared with the actual measured far-field radiation pattern to verify the accuracy of the algorithm.Further combined with polarization compensation and probe compensation algorithms,comparisons are made with uncorrected results and far-field radiation patterns.The results indicate that the polarization probe compensation algorithm can effectively correct the influence of the probe on the far-field radiation pattern.Its uncertainty exceeds the near-to-far-field transformation algorithm by 1.429 5 dB and the polarization compensation algorithm by 0.906 2 dB,ensuring the objectivity and independence of the research.

antenna near-to-far-field transformationprobe compensation algorithmpolarization com-pensation algorithmantenna planar near-field simulation

刘伟康、贾云飞、刘星汛

展开 >

南京理工大学机械工程学院,江苏南京 210094

北京无线电测量研究所,北京 100085

天线近远场变换 探头补偿算法 极化补偿算法 天线平面近场仿真

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(1)