首页|基于深度学习的配电网开关柜电晕放电检测设计

基于深度学习的配电网开关柜电晕放电检测设计

扫码查看
在配电网运行过程中,电晕放电量过大导致间隙击穿,开关柜输出电量信号出现过度电离,降低了运行稳定性.为此,提出基于深度学习的配电网开关柜电晕放电检测方法.利用与电晕信号相关的深度学习识别模型,定义单调非递增函数,并以此为基础,计算信号取样值,实现深度学习下的配电网开关柜电晕信号取样.确定电晕信号串表达式,根据开关柜脉冲求解结果,完成实时放电检测.实验结果表明,所提方法可将电晕放电量最大值控制在100 pC以下,能够避免开关柜输出电量信号出现过度电离的情况.
Design of corona discharge detection for distribution network switchgear based on deep learning
During the operation of the distribution network,excessive corona discharge leads to gap breakdown,resulting in excessive ionization of the output power signal of the switchgear,which reduces operational stability.Therefore,a deep learning based corona discharge detection method for distribution network switchgear is proposed.Using a deep learning recognition model related to corona signals,a monotonic non increasing function is defined,and based on this,the signal sampling value is calculated to achieve sampling of corona signals from distribution network switchgear under deep learning.Determine the expression of the corona signal string,and complete real-time discharge detection based on the solution results of the switchgear pulse.The experimental results show that the proposed method can control the maximum value of corona discharge below 100 pC,and can avoid excessive ionization of the output power signal of the switchgear.

deep learningdistribution network switchgearcorona dischargemonotonic non increasing functiondischarge detection

田超华、赵欢、黄鸿基、孙伟可、王学峰

展开 >

深圳供电局有限公司深汕特别合作区供电局,广东深圳 518038

深度学习 配电网开关柜 电晕放电 单调非递增函数 放电检测

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(1)