首页|基于强化学习的云环境下大数据能效策略模型

基于强化学习的云环境下大数据能效策略模型

扫码查看
大数据需要大量的云资源进行数据处理和分析,运行起来需要消耗较多的能源,在处理大数据的云环境中,资源数量和任务数量呈指数级增长,导致云数据中心的功耗增加.基于此,提出了一种基于强化学习的云环境下大数据能效策略模型,该模型利用DPSO和DQN的集成来更好地估计和校正数据维数缺陷.将所提出的模型与传统的DQN和负载感知算法加以比较.结果表明,随着任务数量的增加,所提模型在大数据处理方面的性能优于传统DQN和负载感知算法,为绿色云环境下的资源配置提供了一种节能方案.
Big data energy efficiency strategy model in cloud environment based on reinforcement learning
Big data requires a large amount of cloud resources for data processing and analysis,which consumes a lot of energy to run.In the cloud environment where big data is processed,the number of resources and tasks increases exponentially,leading to an increase of power consumption in cloud data centers.Based on this,a reinforcement learning based big data energy efficiency strategy model in cloud environment is proposed,in which the integration of DPSO and DQN is utilized to better estimate and correct data dimensionality defects.The proposed model was compared with traditional DQN and load sensing algorithms.The results indicate that as the number of tasks increases,the proposed model outperforms traditional DQN and load sensing algorithms in big data processing,providing an energy-saving schedule for resource allocation in green cloud environments.

reinforcement learningenergy efficiency strategiesbig datacloud environment

余少锋、廖崇阳、马一宁、游锦鹏

展开 >

南方电网储能股份有限公司信息通信分公司,广东广州 510000

南方电网能源发展研究院有限责任公司,广东广州 510000

强化学习 能效策略 大数据 云环境

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(1)