首页|多源异构大数据网络信息安全态势要素识别方法

多源异构大数据网络信息安全态势要素识别方法

扫码查看
针对安全态势要素识别误差较大的问题,提出多源异构大数据网络信息安全态势要素识别方法.根据时间戳分割不同时间段,降维处理多源异构大数据.在此基础上分析网络信息安全面临的威胁,计算时间窗口中全局聚合架构的安全态势值,评估目标网络脆弱性.获取数据网络信息安全态势分布权值,完成安全态势要素识别.实验结果表明,该方法能够识别出威胁情报数据、网络流量数据、安全事件日志、用户行为数据、网络拓扑结构数据,最大识别误差为0.10,具有较高的实用性.
Identification method for information security situation elements of multi-source heterogeneous big data network
Aiming at the problem of significant errors in identifying security situation elements,a multi-source heterogeneous big data network information security situation element identification method is proposed.Divide different time periods based on timestamps and reduce dimensionality to process multi-source heterogeneous big data.On this basis,analyze the threats faced by network information security,calculate the security situation value of the global aggregation architecture in the time window,and evaluate the vulnerability of the target network.Obtain the distribution weights of data network information security situation and complete the identification of security situation elements.The experimental results show that this method can identify threat intelligence data,network traffic data,security event logs,user behavior data,and network topology data,with a maximum recognition error of 0.10,and has high practicality.

multi-source heterogeneous big datanetwork informationsecurity situationelement ident-ification

铁富珍

展开 >

中国人民公安大学,北京 100038

青海警官职业学院,青海 西宁 810000

多源异构大数据 网络信息 安全态势 要素识别

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)