首页|基于改进UNet的结直肠癌腺体细胞分割算法

基于改进UNet的结直肠癌腺体细胞分割算法

扫码查看
医学图像的分割在计算机辅助诊断中起着至关重要的作用.UNet是图像分割的主要方法,但采用UNet网络的编码器存在对结直肠癌腺体细胞特征组织提取不充分、语义融合不全面的问题,使得UNet网络的分割效果不够理想.针对此问题,提出了一种名为RCG-UNet的算法,该算法通过残差结构、Ghost卷积和通道注意力机制改进UNet编码器,并且将ReLU激活函数替换为Mish激活函数,使得图像的特征信息能够更好地提取融合,提高结直肠癌腺体细胞分割精度.使用该网络在GlaS和CRAG数据集上进行了验证,相对于传统UNet网络的相似系数(Dice)分别提升了1.4%和1.5%,平均交并比(mIoU)提升了1.2%和1.5%.
Colorectal cancer glandular cell segmentation algorithm based on improved UNet
Segmentation of medical images plays a crucial role in computer-aided diagnosis.UNet is a primary method for image segmentation,but the encoder in the UNet network suffers from insufficient extraction of colorectal cancer glandular cell tissue features and inadequate semantic fusion,leading to suboptimal segmentation results.To address this issue,an algorithm named RCG-UNet is proposed.This algorithm improves the UNet encoder through a residual structure,Ghost convolution,and a channel attention mechanism,and replaces the ReLU activation function with the Mish activation function.This enhances the feature information extraction and fusion of images,thereby improving the precision of colorectal cancer glandular cell segmentation.The network was tested on the GlaS and CRAG datasets,showing an increase in the Dice similarity coefficient by 1.4%and 1.5%,and an improvement in the mean Intersection over Union(mIoU)by 1.2%and 1.5%,respectively,compared to the traditional UNet network.

medical image segmentationUNetfeature fusioncolorectal cancer

张兴志、彭柯鑫、彭子洋、刘承道

展开 >

成都理工大学计算机与网络安全学院,四川 成都 610059

医学图像分割 UNet 特征融合 结直肠癌

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)