首页|面向医用高精度虚拟现实云平台的高速数据传输技术

面向医用高精度虚拟现实云平台的高速数据传输技术

扫码查看
现有实时医疗数据传输模型易发生丢帧、时延高等问题,文中基于深度强化学习提出了一种用于医疗云平台的高速数据传输模型.针对数据排队过程中的拥堵现象,算法对排队时延、优先权、服务质量指标以及系统容错率进行计算,得到任务的紧急程度,提升了关键任务的执行效率.通过深度强化学习模型对数据进行训练,并利用紧急程度对Q网络参数进行不断更新,得到任务执行的排队顺序,进而优化整个平台的网络时延.在对比实验测试中,所提算法的时延、速率和吞吐量等指标均为最优,证明其能够在低时延的状态下稳定可靠地传输数据.
High speed data transmission technology for medical high precision virtual reality cloud platform
Existing real-time medical data transmission models are prone to issues such as frame loss and high latency.This paper proposes a high-speed data transmission model for medical cloud platforms based on deep reinforcement learning.In response to the congestion phenomenon in the data queuing process,the algorithm calculates the queuing delay on priority,service quality indicators,and system fault tolerance rate to obtain the urgency of tasks and improve the execution efficiency of key tasks.Train the data through a deep reinforcement learning model and continuously update the Q network parameters using urgency to obtain the queue order for task execution,thereby optimizing the network latency of the entire platform.In comparative experimental testing,the proposed algorithm achieved optimal performance in terms of latency,rate,and throughput,demonstrating its ability to stably and reliably transmit data under low latency conditions.

high speed transmission of medical dataqueuing modeldata groupingdeep reinforcement learningcongestion model

陈杰

展开 >

海军军医大学第一附属医院,上海 200433

医疗数据高速传输 排队模型 数据分组 深度强化学习 拥堵模型

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)