首页|基于特征识别与FCM的电力服务数据处理方法

基于特征识别与FCM的电力服务数据处理方法

扫码查看
针对现有电网用户服务数据处理方法效率低、聚类分析能力差等问题,文中提出了一种基于知识图谱(KG)与改进模糊C均值聚类(FCM)的数据处理分析方法.该方法利用KG将复杂的用户数据文本处理过程拆分成知识元结构,采用知识库提取所需的特征内容并进行标准化处理.引入改进FCM算法对处理后的样本进行聚类分析,挖掘出用户数据中的潜在信息.实验分析结果表明,所提方法可以有效提取出各类用户信息并实现聚类,在聚类评价指标中,紧凑度指标为0.96,FMI指标为0.97,分离度指标为0.53,相较于传统方法具有更好的聚类分析与全局寻优能力.
Power service data processing method based on feature recognition and FCM
Aiming at the problems of low efficiency and poor clustering analysis ability of existing data processing methods for power grid user service,this paper proposes a data processing and analysis method based on Knowledge Graph(KG)and improved Fuzzy C-Means clustering(FCM).This method utilizes KG to break down the complex user data text processing process into knowledge element structures,and uses a knowledge base to extract the required feature content and perform standardization processing.By introducing an improved FCM algorithm for clustering analysis of processed samples,potential information in user data was discovered.The experimental analysis results show that the proposed method can effectively extract various types of user information and achieve clustering.Among the clustering evaluation indicators,the compactness index is 0.96,the FMI index is 0.97,and the separation index is 0.53.Compared with traditional methods,it has better clustering analysis and global optimization capabilities.

Knowledge GraphFCMfeature recognitionclustering analysispower userservice data

刘辉舟、倪妍妍、齐红涛、王白根、汤旭

展开 >

国网安徽省电力有限公司,安徽 合肥 230061

知识图谱 模糊C均值聚类 特征识别 聚类分析 电力用户 服务数据

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)