首页|基于多源数据融合的滚动轴承故障诊断

基于多源数据融合的滚动轴承故障诊断

扫码查看
针对单一传感器数据难以完整刻画滚动轴承故障状态信息,导致故障诊断结果不佳的问题,提出了基于多源数据融合的滚动轴承故障诊断方法.为促使模型完整刻画设备运行状态信息,利用通道拼接将振动信号和电流信号构造成多通道数据.同时为抑制多通道数据中无关信息的干扰,在自校正卷积(Self-Calibrated Convolution,SCConv)神经网络中引入卷积注意力模块(Convolu-tional Block Attention Module,CBAM)对不同通道数据进行自适应加权.在多组对比实验中,所提方法分类准确率达到100%,具有良好的鲁棒性和自适应性.
Fault diagnosis of rolling bearings based on multi-source data fusion
Addressing the issue that single sensor data is insufficient to fully characterize the fault state information of rolling bearings,leading to suboptimal fault diagnosis results,a fault diagnosis method for rolling bearings based on multi-source data fusion is proposed.To enable the model to fully characterize the equipment's operational state information,vibration and current signals are combined through channel concatenation to construct multi-channel data.Meanwhile,to suppress irrelevant information interference in multi-channel data,a Convolutional Block Attention Module(CBAM)is introduced into the Self-Calibrated Convolutional(SCConv)neural network for adaptive weighting of different channel data.In a series of comparative experiments,the proposed method achieved a classification accuracy of 100%,demonstrating excellent robustness and adaptability.

rolling bearingsfault diagnosismulti-source data fusionconvolutional block attentionSelf-Calibrated Convolutional

冉航、李鹤鹏

展开 >

重庆交通大学机电与车辆工程学院,重庆 400074

滚动轴承 故障诊断 多源数据融合 卷积注意力 自校正卷积

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)