首页|基于朴素贝叶斯的多模态异构大数据分类优化方法

基于朴素贝叶斯的多模态异构大数据分类优化方法

扫码查看
由于多模态异构大数据维度较高,导致分类模态所属空间分布与实际分布不一致,且数据分类准确率较低.为了解决该问题,提出了基于朴素贝叶斯的多模态异构大数据分类优化方法.利用TF-IDF算法,剔除资源利用率不高的数据.采用朴素贝叶斯分类算法,获取数据发生的概率,分类大数据.降维处理多源异构大数据,通过朴素贝叶斯决策,实现分类数据划分.由实验结果可知,所研究方法模态所属空间分布只与模态3实际分布不完全一致,其余均一致,且分类准确率最终达到0.93%,具有精准的分类效果.
Multimodal heterogeneous big data classification optimization method based on Naive Bayes
Due to the high dimension of multimodal heterogeneous big data,the spatial distribution of classification modes is inconsistent with the actual distribution,and the accuracy of data classification is low.To solve this problem,a multimodal heterogeneous big data classification optimization method based on Naive Bayes is proposed.Utilize TF-IDF algorithm to eliminate data with low resource utilization.Naive Bayes classification algorithm is used to obtain the probability of data occurrence and classify big data.Dimension reduction deals with multi-source heterogeneous big data,and classifies data through Naive Bayes decision-making.The experimental results show that the spatial distribution of the studied method's modality is only not completely consistent with the actual distribution of modality 3,and the rest are consistent.The classification accuracy ultimately reaches 0.93%,indicating a precise classification effect.

Naive Bayesmultimodal heterogeneousbig data classificationTF-IDF algorithm

李辉、郝翠萍、常欢欢

展开 >

江苏电力信息技术有限公司,江苏 南京 210000

朴素贝叶斯 多模态异构 大数据分类 TF/DF算法

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)