首页|基于多特征融合的数字档案标签非均衡样本分类算法

基于多特征融合的数字档案标签非均衡样本分类算法

扫码查看
由于数字档案标签样本存在较多冗余信息,不同类别的样本数量不平衡,且在分类过程中,无法保证数据信息的完整性,导致分类不精准.为此,提出基于多特征融合的数字档案标签非均衡样本分类算法.利用多特征融合模型,计算相似性特征,推导数据样本的标准融合条件,求解降维参数,完成数字档案标签降维处理.构造非均衡样本的关系特征,并联合迭代分类标准,确定数字档案标签非均衡样本分类.实验结果表明,所提算法的应用可以将数字档案信息传输至正确目标位置,符合精准分类应用需求.
Digital archive label unbalanced sample classification algorithm based on multi-feature fusion
Due to the presence of redundant information in digital archive label samples,the number of samples in different categories is imbalanced,and the completeness of data information cannot be guaranteed during the classification process,resulting in inaccurate classification.To this end,a digital archive label unbalanced sample classification algorithm based on multi feature fusion is proposed.Using a multi feature fusion model,calculate similarity features,derive standard fusion conditions for data samples,solve dimensionality reduction parameters,and complete dimensionality reduction processing for digital archive labels.Construct the relationship features of imbalanced samples and combine them with iterative classification standards to determine the classification of imbalanced samples in digital archive labels.The experimental results show that the application of the proposed algorithm can transmit digital archive information to the correct target location,meeting the requirements of precise classification applications.

multi-feature fusiondigital archive labelunbalanced samplesimilarity featuredimension reduction parameteriterative classification

周红林、曾春生、刘国强

展开 >

江苏电力信息技术有限公司,江苏 南京 210000

多特征融合 数字档案标签 非均衡样本 相似性特征 降维参数 迭代分类

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)