首页|基于注意力机制的轻量化人体姿态估计网络

基于注意力机制的轻量化人体姿态估计网络

扫码查看
针对智能家居等移动设备计算资源和存储空间有限的问题,使用高分辨率网络作为主干,引入轻量级卷积神经网络ShuffleNetV2和注意力机制,提出了一种高效轻量的网络.用视觉Trans-former的多头自注意力层替换ShuffleNetV2的3×3深度可分离卷积,得到新模块.用新模块替换高分辨网络第二个3×3卷积及后三阶段的所有残差块.设计了一种新的输出模块,包含并行双注意力结构和先卷积后采样结构.通过设置不同的模块数量、通道数量和多头数量得到了两种大小的网络.实验结果表明,两种网络与其他主流人体姿态估计网络相比准确率更高,参数量下降50%以上,达到轻量化的目的.
Lightweight human pose estimation network based on attention mechanish
In response to the limited computing resources and storage space of mobile devices such as smart homes,a high-resolution network is used as the backbone,and a lightweight convolutional neural network ShuffleNetV2 and attention mechanism are introduced to propose an efficient and lightweight network.A new block is proposed,which replaces the ShuffleNetV2's 3×3 depthwise separable convolution with a multi-head self-attention layer of Vision Transformer.Replace the second 3×3 convolution and all residual blocks in the last three stages of the high-resolution network with a new block.A new output module has been designed,which includes a parallel dual attention structure and convolution followed by sampling.Two different sizes of networks were obtained by setting different numbers of modules,channels,and multi-heads.The experimental results show that the two networks have higher accuracy compared to other mainstream human pose estimation networks,with a parameter reduction of more than 50%,achieving the goal of lightweight.

high-resolution networkMulti-head Self-AttentionShuffleNetdepthwise separable convo-lution

黄凯伦、王峥

展开 >

武汉邮电科学研究院,湖北 武汉 430070

南京烽火天地通信科技有限公司,江苏 南京 210019

高分辨率网络 多头自注意力 混洗网络 深度可分离卷积

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)