首页|基于改进空间双模态图推理的收据信息抽取法

基于改进空间双模态图推理的收据信息抽取法

扫码查看
针对空间双模态图推理的SDMG-R算法未深入分析复杂文档布局,关键信息抽取精度低等问题,该文提出了一种改进的SDMG-R算法.为了增强模型对图像中重要信息的关注能力,减少噪声和不相关信息的敏感,在图像特征提取模块中融入了注意力机制;为了扩大卷积核的感受野,捕捉更广泛的上下文信息,在U-Net下采样部分将普通的卷积改成扩张卷积;为了捕捉句子中复杂的依赖关系,使用BERT预训练模型来提取收据中的文本特征;且为了能够更好地处理数据中节点之间的复杂关系,在图推理模块中嵌入句子长度之比.实验结果表明,相较于原空间双模态图推理的SDMG-R算法,改进方法的精度在WildReceipt数据集上提升了2.32%.该文所提关键信息抽取的方法对收据的智能化管理与分析具有现实意义.
Receipt information extraction method based on improved spatial dual-modality graph reasoning
Aiming at the problems that the SDMG-R algorithm for spatial bimodal graph reasoning does not provide in-depth analysis of complex document layouts and has low key information extraction accuracy,an improved SDMG-R algorithm is proposed.In order to enhance the model's ability to pay attention to important information in the image and reduce the sensitivity to noise and irrelevant information,an attention mechanism is integrated into the image feature extraction module;in order to expand the receptive field of the convolution kernel and capture a wider range of contextual information,In the U-Net downsampling part,ordinary convolutions are changed to dilated convolutions;in order to capture complex dependencies in sentences,it is proposed to use the BERT pre-training model to extract text features in receipts.In order to better process data complex relationships between nodes,the ratio of sentence lengths are embedded in graph reasoning modules.Experimental results show that compared with the SDMG-R algorithm for dual-modal graph reasoning in the original space,the accuracy of the improved method is improved by 2.32%on the WildReceipt data set.The key information extraction method proposed in this article has practical significance for the intelligent management and analysis of receipts.

key information extractionGNNattention mechanismdilated convolutionBERT

朱寅、蒋三新

展开 >

上海电力大学电子与信息工程学院,上海 201306

关键信息抽取 图神经网络 注意力机制 扩张卷积 BERT

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(2)