首页|基于机器视觉的车辆碰撞检测方法研究

基于机器视觉的车辆碰撞检测方法研究

扫码查看
为了快速识别道路车辆碰撞事故,提出了一种基于机器视觉的车辆碰撞检测方法.该方法使用YOLOv5深度神经网络模型,实现对车辆的快速识别;在此基础上,引入卡尔曼滤波以及匈牙利匹配算法,完成对车辆的多目标追踪;利用视觉里程计算法,得出车辆速度、重合度、轨迹偏转量等参数,通过检测参数是否发生异常来判断碰撞的发生.测试结果表明,与现有算法相比,该方法在识别正确率上有较大的提升.
Research on vehicle collision detection method based on computer vision
In order to quickly identify road vehicle collision accidents,a vehicle collision detection method based on machine vision is proposed.This method uses the YOLOv5 deep neural model to achieve rapid recognition of vehicles;On this basis,Kalman filtering and Hungarian matching algorithm are introduced to achieve multi target tracking of vehicles;Using the visual odometry calculation method,parameters such as vehicle speed,overlap,and trajectory deflection are obtained,and the occurrence of a collision is judged by whether the above parameters are abnormal.The test results show that compared with existing algorithms,this method has a significant improvement in recognition accuracy.

collision detectioncomputer visionmulti-target tracingvisual odometry

洪伟天、齐腾飞、刘文昊、李少伟、朱国华

展开 >

江汉大学人工智能学院,湖北 武汉 430056

碰撞检测 机器视觉 多目标追踪 视觉里程计

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)