首页|基于集成学习的医疗数据治理与多源数据融合研究

基于集成学习的医疗数据治理与多源数据融合研究

扫码查看
针对医疗数据治理中存在的数据分散、异构和质量不高等问题,提出了一种基于集成学习的多源数据融合方法.通过集成多种机器学习算法,对来自不同医疗部门和不同系统的数据进行清洗、整合和分析,实现了数据的高效利用与质量提升.结果表明,集成学习算法在多源数据集上获得了最高的分类性能,准确率达到85.32%,优于其他单一源数据集上的分类方法.研究证明,多源数据融合结合集成学习能够显著提升医疗数据分类模型的性能,为临床决策提供更为精准的支持.
Research on medical data governance and multi-source data fusion based on integrated learning
For the problems of data dispersion,heterogeneous and low quality in medical data governance,a multi-source data fusion method based on integrated learning is proposed.By integrating a variety of machine learning algorithms,data from different medical departments and different systems are cleaned integrated and analyzed,and efficient data utilization and quality improvement are realized.The results show that the ensemble learning algorithm achieves the highest classification performance on multi-source datasets with an accuracy of 85.32%,outperforming other classification methods on single-source datasets.Studies have proved that multi-source data fusion combined with integrated learning can significantly improve the performance of medical data classification models and provide moreaccurate support for clinical decision-making.

medical data governancemulti-source dataintegrated learningclassification

魏雪瑶、郭敬鹏、李功靖

展开 >

首都医科大学附属北京同仁医院信息中心,北京 100730

医疗数据治理 多源数据 集成学习 分类

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)