首页|非参数核密度估计下台区线损异常数据辨识

非参数核密度估计下台区线损异常数据辨识

扫码查看
针对当前台区线损系统接入海量数据,导致异常数据难以精准辨识的问题,提出了非参数核密度估计下台区线损异常数据辨识方法.构建基于高斯核的台区线损异常数据模型,结合非参数核密度估计方法,分析异常数据正负"秩和"特征.计算历史电量数据在同一时刻下的最大和最小值,获取历史数据域窗宽上下限.结合二维小波去噪方法,对去噪阈值自身特征进行半软阈值函数处理,实现电网台区线损数据去噪.设计非参数核密度估计待检曲线,实现线损异常数据辨识.由实验结果可知,该方法在夏天辨识出2个线损异常数据,在冬天辨识出9个线损异常数据,与实际线损异常数据数量一致,具有精准辨识效果.可以根据辨识出来的台区线损异常数据,对配电网供电线路进行优化调整,以降低线损并提升供电质量.
Identification of abnormal data of substation line loss under nonparametric kernel density estimation
A nonparametric kernel density estimation method for identifying abnormal data in substation line loss systems is proposed to address the issue of accessing massive amounts of data,which makes it difficult to accurately identify abnormal data.Construct station area line loss anomaly data model based on Gaussian kernel,and combine it with nonparametric kernel density estimation method to analyze the positive and negative"rank sum"characteristics of the anomaly data.Calculate the maximum and minimum values of historical electricity data at the same time,and obtain the upper and lower bounds of the historical data domain window width.By combining the two-dimensional wavelet denoising method,the denoising threshold's own characteristics are processed with a semi soft threshold function to achieve denoising of line loss data in the power grid substation area.Design a nonparametric kernel density estimation waiting curve to identify abnormal line loss data.According to the experimental results,this method identified 2 abnormal line loss data in the summer and 9 abnormal line loss data in the winter,which is consistent with the actual number of abnormal line loss data and has a precise identification effect.Based on the identified abnormal data of line loss in the substation area,the power supply lines of the distribution network can be optimized and adjusted to reduce line loss and improve power supply quality.

nonparametric kernel densitysubstation line lossidentification of abnormal datarank sum

陈明、何雪梅、赵顺麟、饶旭妮、虞瑾

展开 >

国网上海市电力公司市南供电公司,上海 201199

非参数核密度 台区线损 异常数据辨识 秩和

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)