首页|面向大规模新能源并网的无功电压优化技术

面向大规模新能源并网的无功电压优化技术

扫码查看
为改善系统电能质量和电压稳定性,文中提出了一种结合深度神经网络和粒子群优化算法的无功电压优化方法.该方法通过采用图卷积神经网络对电力系统运行状态进行特征提取,辨识出对无功电压优化最有效的控制节点.在压缩控制节点后采用粒子群优化法对无功电压优化模型进行求解,避免了传统算法对求解初值要求高、计算耗时长的问题.以某地电网数据为算例进行了实验验证,不同方法求解所得到的系统无功功率分布和节点电压分布情况表明,所提方法在优化系统无功功率、改善节点电压方面相比于其他方法均有一定提高,系统线路平均负载率仅为0.67%.
Reactive power voltage optimization technology for large-scale new energy grid connection
In order to improve the power quality and voltage stability of the system,a reactive power and voltage optimization method combining deep neural network and Particle Swarm Optimization algorithm is proposed.This method identifies the most effective control node for reactive power and voltage optimization by feature extraction of power system operation state using graph Convolutional neural network.After compressing the control node,the Particle swarm optimization method is used to solve the reactive power and voltage optimization model,which avoids the problem of traditional algorithms requiring high initial value and long calculation time.The experimental verification was conducted using a certain power grid data as an example.The distribution of reactive power and node voltage obtained by different methods showed that the proposed method has a certain improvement compared to other methods in optimizing system reactive power and improving node voltage.The average load rate of the system line is only 0.67% .

Particle Swarm Optimization algorithmnew energyvoltage optimizationpower grid planningpower quality

牛浩明、鲁怡兰、张立清、王维洲

展开 >

国网甘肃省电力公司电力科学研究院,甘肃 兰州 730030

中国矿业大学(北京)机电与信息工程学院,北京 100083

中国农业大学信息与电气工程学院,北京 100083

国网甘肃省电力公司,甘肃 兰州 730030

展开 >

粒子群算法 新能源 电压优化 电网规划 电能质量

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)