首页|深度挖掘与聚类分析框架下的电力负荷控制技术

深度挖掘与聚类分析框架下的电力负荷控制技术

扫码查看
为了提升新型电力系统中配电网台区内重要用户的服务水平,文中对电力负荷控制技术进行了研究,通过训练高精度、高效率的负荷预测网络,为负荷控制提供实时指导.引入了一种以动态时间(DTW)相似度为判别准则的聚类算法,根据台区内用户的历史用电趋势、电压等级、接入方式等信息对用户数据进行预处理,通过同类用户的池化提升了深度挖掘的效率.使用深度神经网络(DNN)作为用户负荷的非线性预测拟合算法,以交叉熵函数作为该网络的损失函数,改善了DNN误差方向传播迭代的效率.为了评估算法的性能,基于某供电公司的实际负荷数据对所提方法进行了测试.仿真结果表明,与传统K-means算法相比,DTW算法的聚类效能比变化曲线与实际数据的吻合度更高,DTW-DNN算法的MAPE、RMSE较普通DNN网络分别提升了6.9%和3.96%.
Power load control technology under the framework of deep data mining and cluster analysis
In order to improve the service level of important users in the distribution network area of the new power system,this paper studies the power load control technology.By training high-precision and high-efficiency load prediction networks,real-time guidance is provided for load control.A clustering algorithm based on Dynamic Time Warping(DTW)similarity was introduced to preprocess user data based on historical electricity consumption trends,voltage levels,access methods,and other information of users in the substation area.By pooling similar users,the efficiency of deep mining was improved.The Deep Neural Network(DNN)is used as the nonlinear prediction fitting algorithm of user load,and the Cross entropy function is used as the Loss function of the network,which improves the efficiency of DNN error direction propagation iteration.In order to evaluate the performance of the algorithm,the proposed method is tested based on the actual load data of a power supply company.The simulation results show that compared with the traditional K-means algorithm,the clustering efficiency of the DTW algorithm is better than the consistency between the change curve and the actual data,and the MAPE and RMSE of the DTW-DNN algorithm are increased by 6.9% and 3.96% respectively compared with the ordinary DNN network.

cluster analysisDNNDTWdeep learningload forecastingload control

王者龙、王硕、周子杰、魏姗姗、朱国梁

展开 >

国网山东省电力公司,山东 济南 250000

国网山东综合能源服务有限公司,山东 济南 250000

聚类分析 DNN DTW 深度学习 负荷预测 负荷控制

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)